Some natural operators on vector fields
Archivum Mathematicum (1995)
- Volume: 031, Issue: 3, page 239-249
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topTomáš, Jiří M.. "Some natural operators on vector fields." Archivum Mathematicum 031.3 (1995): 239-249. <http://eudml.org/doc/247673>.
@article{Tomáš1995,
abstract = {We determine all natural operators transforming vector fields on a manifold $M$ to vector fields on $T^*T^2_1M$, $\operatorname\{dim\}M \ge 2$, and all natural operators transforming vector fields on $M$ to functions on $T^*TT^2_1M$, $\operatorname\{dim\}M \ge 3$. We describe some relations between these two kinds of natural operators.},
author = {Tomáš, Jiří M.},
journal = {Archivum Mathematicum},
keywords = {vector field; natural bundle; natural operator; Weil bundle; natural bundle; Weil bundle; natural operators; vector fields},
language = {eng},
number = {3},
pages = {239-249},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Some natural operators on vector fields},
url = {http://eudml.org/doc/247673},
volume = {031},
year = {1995},
}
TY - JOUR
AU - Tomáš, Jiří M.
TI - Some natural operators on vector fields
JO - Archivum Mathematicum
PY - 1995
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 031
IS - 3
SP - 239
EP - 249
AB - We determine all natural operators transforming vector fields on a manifold $M$ to vector fields on $T^*T^2_1M$, $\operatorname{dim}M \ge 2$, and all natural operators transforming vector fields on $M$ to functions on $T^*TT^2_1M$, $\operatorname{dim}M \ge 3$. We describe some relations between these two kinds of natural operators.
LA - eng
KW - vector field; natural bundle; natural operator; Weil bundle; natural bundle; Weil bundle; natural operators; vector fields
UR - http://eudml.org/doc/247673
ER -
References
top- The canonical isomorphism between and , C. R. Acad. Sci. Paris 309 (1989), 1509-1514. (1989) MR1033091
- Natural liftings of vector fields to tangent bundles of -forms, Mathematica Bohemica 116 (1991), 319-326. (1991) MR1126453
- Covariant Approach to Natural Transformations of Weil Bundles, Comment. Math. Univ. Carolinae (1986). (1986) MR0874666
- On Cotagent Bundles of Some Natural Bundles, to appear in Rendiconti del Circolo Matematico di Palermo. MR1344006
- On the Natural Operators on Vector Fields, Ann. Global Anal. Geometry 6 (1988), 109-117. (1988) MR0982760
- Natural Operations in Differential Geometry, Springer – Verlag, 1993. (1993) MR1202431
- Natural Transformations of Second Tangent and Cotangent Bundles, Czechoslovak Math. (1988), 274-279. (1988) MR0946296
- Some results on second tangent and cotangent spaces, Quaderni dell’Università di Lecce (1978). (1978)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.