A contact metric manifold satisfying a certain curvature condition

Jong Taek Cho

Archivum Mathematicum (1995)

  • Volume: 031, Issue: 4, page 319-333
  • ISSN: 0044-8753

Abstract

top
In the present paper we investigate a contact metric manifold satisfying (C) ( ¯ γ ˙ R ) ( · , γ ˙ ) γ ˙ = 0 for any ¯ -geodesic γ , where ¯ is the Tanaka connection. We classify the 3-dimensional contact metric manifolds satisfying (C) for any ¯ -geodesic γ . Also, we prove a structure theorem for a contact metric manifold with ξ belonging to the k -nullity distribution and satisfying (C) for any ¯ -geodesic γ .

How to cite

top

Cho, Jong Taek. "A contact metric manifold satisfying a certain curvature condition." Archivum Mathematicum 031.4 (1995): 319-333. <http://eudml.org/doc/247685>.

@article{Cho1995,
abstract = {In the present paper we investigate a contact metric manifold satisfying (C) $(\bar\{\nabla \}_\{\dot\{\gamma \}\}R)(\cdot ,\dot\{\gamma \})\dot\{\gamma \}=0$ for any $\bar\{\nabla \}$-geodesic $\gamma $, where $\bar\{\nabla \}$ is the Tanaka connection. We classify the 3-dimensional contact metric manifolds satisfying (C) for any $\bar\{\nabla \}$-geodesic $\gamma $. Also, we prove a structure theorem for a contact metric manifold with $\xi $ belonging to the $k$-nullity distribution and satisfying (C) for any $\bar\{\nabla \}$-geodesic $\gamma $.},
author = {Cho, Jong Taek},
journal = {Archivum Mathematicum},
keywords = {contact metric manifolds; Tanaka connection; Jacobi operator; Jacobi operator; contact metric manifold; locally -symmetric space; constant sectional curvature},
language = {eng},
number = {4},
pages = {319-333},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A contact metric manifold satisfying a certain curvature condition},
url = {http://eudml.org/doc/247685},
volume = {031},
year = {1995},
}

TY - JOUR
AU - Cho, Jong Taek
TI - A contact metric manifold satisfying a certain curvature condition
JO - Archivum Mathematicum
PY - 1995
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 031
IS - 4
SP - 319
EP - 333
AB - In the present paper we investigate a contact metric manifold satisfying (C) $(\bar{\nabla }_{\dot{\gamma }}R)(\cdot ,\dot{\gamma })\dot{\gamma }=0$ for any $\bar{\nabla }$-geodesic $\gamma $, where $\bar{\nabla }$ is the Tanaka connection. We classify the 3-dimensional contact metric manifolds satisfying (C) for any $\bar{\nabla }$-geodesic $\gamma $. Also, we prove a structure theorem for a contact metric manifold with $\xi $ belonging to the $k$-nullity distribution and satisfying (C) for any $\bar{\nabla }$-geodesic $\gamma $.
LA - eng
KW - contact metric manifolds; Tanaka connection; Jacobi operator; Jacobi operator; contact metric manifold; locally -symmetric space; constant sectional curvature
UR - http://eudml.org/doc/247685
ER -

References

top
  1. Two natural generalizations of locally symmetric spaces, Diff. Geom. Appl. 2 (1992), 57-80. (1992) MR1244456
  2. Contact manifolds in Riemannian geometry, Lecture Notes in Math. Springer-Verlag, Berlin-Heidelberg-New-York. 509 (1976), . (1976) Zbl0319.53026MR0467588
  3. A classification of 3-dimensional contact metric manifolds with Q φ = φ Q , Kodai Math.J. 13 (1990), 391-401. (1990) MR1078554
  4. Three-dimensional locally symmetric contact metric manifolds, to appear in Boll.Un.Mat.Ital.. MR1083268
  5. Symmetries and φ -symmetric spaces, Tôhoku Math.J. 39 (1987), 373-383. (1987) MR0902576
  6. Lecons sur la géométrie des espaces de Riemann, 2nd éd., Gauthier-Villars, Paris (1946). (1946) MR0020842
  7. On some classes of almost contact metric manifolds, Tsukuba J. Math. 19 (1995), 201-217. (1995) Zbl0835.53054MR1346762
  8. On some classes of contact metric manifolds, Rend.Circ.Mat. Palermo XLIII (1994), 141–160. (1994) Zbl0817.53019MR1305332
  9. Generalizations of locally symmetric spaces and locally φ -symmetric spaces, Niigata Univ. Doctorial Thesis (1994), . (1994) 
  10. On contact metric manifolds, Tôhoku Math. J. 31 (1979), . (1979) Zbl0397.53026MR0538923
  11. Sasakian φ -symmetric spaces, Tôhoku Math. J. 29 (1977), 91-113. (1977) MR0440472
  12. On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan J. Math. 2 (1976), 131-190. (1976) Zbl0346.32010MR0589931
  13. Ricci curvature of contact Riemannian manifolds, Tôhoku Math. J. 40 (1988), 441-448. (1988) MR0957055
  14. Variational problems on contact Riemannian manifolds,, Trans. Amer. Math. Soc. 314 (1989), 349-379. (1989) Zbl0677.53043MR1000553
  15. Homogeneous structures on Riemannian manifolds, London Math. Soc. Lecture Note Ser. 83, Cambridge University Press, London (1983), . (1983) MR0712664

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.