A contact metric manifold satisfying a certain curvature condition
Archivum Mathematicum (1995)
- Volume: 031, Issue: 4, page 319-333
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topCho, Jong Taek. "A contact metric manifold satisfying a certain curvature condition." Archivum Mathematicum 031.4 (1995): 319-333. <http://eudml.org/doc/247685>.
@article{Cho1995,
abstract = {In the present paper we investigate a contact metric manifold satisfying (C) $(\bar\{\nabla \}_\{\dot\{\gamma \}\}R)(\cdot ,\dot\{\gamma \})\dot\{\gamma \}=0$ for any $\bar\{\nabla \}$-geodesic $\gamma $, where $\bar\{\nabla \}$ is the Tanaka connection. We classify the 3-dimensional contact metric manifolds satisfying (C) for any $\bar\{\nabla \}$-geodesic $\gamma $. Also, we prove a structure theorem for a contact metric manifold with $\xi $ belonging to the $k$-nullity distribution and satisfying (C) for any $\bar\{\nabla \}$-geodesic $\gamma $.},
author = {Cho, Jong Taek},
journal = {Archivum Mathematicum},
keywords = {contact metric manifolds; Tanaka connection; Jacobi operator; Jacobi operator; contact metric manifold; locally -symmetric space; constant sectional curvature},
language = {eng},
number = {4},
pages = {319-333},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A contact metric manifold satisfying a certain curvature condition},
url = {http://eudml.org/doc/247685},
volume = {031},
year = {1995},
}
TY - JOUR
AU - Cho, Jong Taek
TI - A contact metric manifold satisfying a certain curvature condition
JO - Archivum Mathematicum
PY - 1995
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 031
IS - 4
SP - 319
EP - 333
AB - In the present paper we investigate a contact metric manifold satisfying (C) $(\bar{\nabla }_{\dot{\gamma }}R)(\cdot ,\dot{\gamma })\dot{\gamma }=0$ for any $\bar{\nabla }$-geodesic $\gamma $, where $\bar{\nabla }$ is the Tanaka connection. We classify the 3-dimensional contact metric manifolds satisfying (C) for any $\bar{\nabla }$-geodesic $\gamma $. Also, we prove a structure theorem for a contact metric manifold with $\xi $ belonging to the $k$-nullity distribution and satisfying (C) for any $\bar{\nabla }$-geodesic $\gamma $.
LA - eng
KW - contact metric manifolds; Tanaka connection; Jacobi operator; Jacobi operator; contact metric manifold; locally -symmetric space; constant sectional curvature
UR - http://eudml.org/doc/247685
ER -
References
top- Two natural generalizations of locally symmetric spaces, Diff. Geom. Appl. 2 (1992), 57-80. (1992) MR1244456
- Contact manifolds in Riemannian geometry, Lecture Notes in Math. Springer-Verlag, Berlin-Heidelberg-New-York. 509 (1976), . (1976) Zbl0319.53026MR0467588
- A classification of 3-dimensional contact metric manifolds with , Kodai Math.J. 13 (1990), 391-401. (1990) MR1078554
- Three-dimensional locally symmetric contact metric manifolds, to appear in Boll.Un.Mat.Ital.. MR1083268
- Symmetries and -symmetric spaces, Tôhoku Math.J. 39 (1987), 373-383. (1987) MR0902576
- Lecons sur la géométrie des espaces de Riemann, 2nd éd., Gauthier-Villars, Paris (1946). (1946) MR0020842
- On some classes of almost contact metric manifolds, Tsukuba J. Math. 19 (1995), 201-217. (1995) Zbl0835.53054MR1346762
- On some classes of contact metric manifolds, Rend.Circ.Mat. Palermo XLIII (1994), 141–160. (1994) Zbl0817.53019MR1305332
- Generalizations of locally symmetric spaces and locally -symmetric spaces, Niigata Univ. Doctorial Thesis (1994), . (1994)
- On contact metric manifolds, Tôhoku Math. J. 31 (1979), . (1979) Zbl0397.53026MR0538923
- Sasakian -symmetric spaces, Tôhoku Math. J. 29 (1977), 91-113. (1977) MR0440472
- On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan J. Math. 2 (1976), 131-190. (1976) Zbl0346.32010MR0589931
- Ricci curvature of contact Riemannian manifolds, Tôhoku Math. J. 40 (1988), 441-448. (1988) MR0957055
- Variational problems on contact Riemannian manifolds,, Trans. Amer. Math. Soc. 314 (1989), 349-379. (1989) Zbl0677.53043MR1000553
- Homogeneous structures on Riemannian manifolds, London Math. Soc. Lecture Note Ser. 83, Cambridge University Press, London (1983), . (1983) MR0712664
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.