A commutativity theorem for associative rings
Archivum Mathematicum (1995)
- Volume: 031, Issue: 3, page 201-204
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topAshraf, Mohammad. "A commutativity theorem for associative rings." Archivum Mathematicum 031.3 (1995): 201-204. <http://eudml.org/doc/247699>.
@article{Ashraf1995,
abstract = {Let $m > 1, s\ge 1$ be fixed positive integers, and let $R$ be a ring with unity $1$ in which for every $x$ in $R$ there exist integers $p = p(x) \ge 0, q = q(x) \ge 0, n = n(x) \ge 0, r = r(x) \ge 0 $ such that either $ x^\{p\}[x^\{n\},y]x^\{q\} = x^\{r\}[x,y^\{m\}]y^\{s\} $ or $ x^\{p\}[x^\{n\},y]x^\{q\} = y^\{s\}[x,y^\{m\}]x^\{r\} $ for all $ y \in R $. In the present paper it is shown that $R$ is commutative if it satisfies the property $Q(m)$ (i.e. for all $x,y \in R, m[x,y] = 0$ implies $[x,y] = 0$).},
author = {Ashraf, Mohammad},
journal = {Archivum Mathematicum},
keywords = {polynomial identity; nilpotent element; commutator ideal; associative ring; torsion free ring; center; commutativity; commutativity theorem; commutator constraints},
language = {eng},
number = {3},
pages = {201-204},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A commutativity theorem for associative rings},
url = {http://eudml.org/doc/247699},
volume = {031},
year = {1995},
}
TY - JOUR
AU - Ashraf, Mohammad
TI - A commutativity theorem for associative rings
JO - Archivum Mathematicum
PY - 1995
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 031
IS - 3
SP - 201
EP - 204
AB - Let $m > 1, s\ge 1$ be fixed positive integers, and let $R$ be a ring with unity $1$ in which for every $x$ in $R$ there exist integers $p = p(x) \ge 0, q = q(x) \ge 0, n = n(x) \ge 0, r = r(x) \ge 0 $ such that either $ x^{p}[x^{n},y]x^{q} = x^{r}[x,y^{m}]y^{s} $ or $ x^{p}[x^{n},y]x^{q} = y^{s}[x,y^{m}]x^{r} $ for all $ y \in R $. In the present paper it is shown that $R$ is commutative if it satisfies the property $Q(m)$ (i.e. for all $x,y \in R, m[x,y] = 0$ implies $[x,y] = 0$).
LA - eng
KW - polynomial identity; nilpotent element; commutator ideal; associative ring; torsion free ring; center; commutativity; commutativity theorem; commutator constraints
UR - http://eudml.org/doc/247699
ER -
References
top- Abujabal H. A. S., On commutativity of left s-unital rings, Acta Sci. Math. (Szeged) 56 (1992), 51-62. (1992) Zbl0806.16034MR1204738
- Abujabal H. A. S., Obaid M. A., Some commutativity theorems for right s-unital rings, Math. Japonica, 37, No. 3 (1992), 591-600. (1992) Zbl0767.16010MR1162474
- Ashraf M., Quadri M. A., On commutativity of associative rings with constraints involving a subset, Rad. Mat.5 (1989), 141-149. (1989) Zbl0683.16025MR1012730
- Ashraf M., Jacob V. W., On certain polynomial identities implying commutativity for rings, (submitted). Zbl0988.16518
- Bell H. E., On the power map and ring commutativity, Canad. Math. Bull. 21 (1978), 399-404. (1978) Zbl0403.16024MR0523579
- Bell H. E., Commutativity of rings with constraints on commutators, Resultate der Math. 8 (1985), 123-131. (1985) Zbl0606.16023MR0828934
- Hermanci A., Two elementary commutativity theorems for rings, Acta Math. Acad.Sci. Hungar. 29 (1977),23-29. (1977) MR0444712
- Jacobson N., Structure of rings, 37 (Amer. Math. Soc. Colloq. Publ. Providence, 1956). (1956) Zbl0073.02002MR0081264
- Kezlan T. P., A note on commutativity of semi-prime PI- rings, Math. Japonica 27 (1982) 267-268. (1982) MR0655230
- Kezlan T. P., A commutativity theorem involving certain polynomial constraints, Math. Japonica 36, No. 4 (1991),785-789. (1991) Zbl0735.16021MR1120461
- Kezlan T. P., On commutativity theorems for PI-rings with unity, Tamkang J. math. 24 No. 1 (1993), 29-36. (1993) MR1215242
- Komatsu H., A commutativity theorem for rings, Math. J. Okayama Univ. 26 (1984), 135-139. (1984) Zbl0568.16017MR0779780
- Komatsu H., A commutativity theorem for rings-II, Osaka J. Math. 22 (1985), 811-814. (1985) Zbl0575.16017MR0815449
- Nicholson W. K., Yaqub A., A commutativity theorem for rings and groups, Canad. Math. Bull. 22 (1979), 419-423. (1979) Zbl0605.16020MR0563755
- Psomopoulos E., A commutativity theorem for rings involving a subset of the ring, Glasnik Mat. 18 (1983), 231-236. (1983) Zbl0528.16017MR0733162
- Psomopoulos E., Commutativity theorems for rings and groups with constraints on commutators, Internat. J. Math. & Math. Sci. 7 No. 3(1984), 513-517. (1984) Zbl0561.16013MR0771600
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.