An existence theorem for extended mildly nonlinear complementarity problem in semi-inner product spaces
Commentationes Mathematicae Universitatis Carolinae (1995)
- Volume: 36, Issue: 1, page 25-31
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKhan, M. S.. "An existence theorem for extended mildly nonlinear complementarity problem in semi-inner product spaces." Commentationes Mathematicae Universitatis Carolinae 36.1 (1995): 25-31. <http://eudml.org/doc/247717>.
@article{Khan1995,
abstract = {We prove a result for the existence and uniqueness of the solution for a class of mildly nonlinear complementarity problem in a uniformly convex and strongly smooth Banach space equipped with a semi-inner product. We also get an extension of a nonlinear complementarity problem over an infinite dimensional space. Our last results deal with the existence of a solution of mildly nonlinear complementarity problem in a reflexive Banach space.},
author = {Khan, M. S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {strongly smooth Banach space; mildly nonlinear complementarity problem; existence theorem; extended mildly nonlinear complementarity problem; semi-inner product spaces},
language = {eng},
number = {1},
pages = {25-31},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {An existence theorem for extended mildly nonlinear complementarity problem in semi-inner product spaces},
url = {http://eudml.org/doc/247717},
volume = {36},
year = {1995},
}
TY - JOUR
AU - Khan, M. S.
TI - An existence theorem for extended mildly nonlinear complementarity problem in semi-inner product spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 1
SP - 25
EP - 31
AB - We prove a result for the existence and uniqueness of the solution for a class of mildly nonlinear complementarity problem in a uniformly convex and strongly smooth Banach space equipped with a semi-inner product. We also get an extension of a nonlinear complementarity problem over an infinite dimensional space. Our last results deal with the existence of a solution of mildly nonlinear complementarity problem in a reflexive Banach space.
LA - eng
KW - strongly smooth Banach space; mildly nonlinear complementarity problem; existence theorem; extended mildly nonlinear complementarity problem; semi-inner product spaces
UR - http://eudml.org/doc/247717
ER -
References
top- Bazaraa M.S., Goode J.J., Nashed M.Z., A nonlinear complementarity problem in mathematical programming in Banach spaces, Proc. Amer. Math. Soc. 35 (1972), 165-170. (1972) MR0300163
- Browder F.E., Nonlinear monotone operators and convex sets in Banach spaces, Bull. Amer. Math. Soc. 71 (1965), 780-785. (1965) Zbl0138.39902MR0180882
- Edelstein M., On nearest points of sets in uniformly convex Banach spaces, J. London Math. Soc. 43 (1968), 375-377. (1968) Zbl0183.40403MR0226364
- Edelstein M., On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962), 74-79. (1962) Zbl0113.16503MR0133102
- Giles J.R., Classes of semi-inner product spaces, Trans. Amer. Math. Soc. 129 (1967), 436-446. (1967) Zbl0157.20103MR0217574
- Lumer G., Semi-inner product spaces, Trans. Amer. Math. Soc. 100 (1969), 29-43. (1969) MR0133024
- Nanda S., A non-linear complementarity problem in semi-inner product space, Rendiconti di Matematica 1 (1982), 167-171. (1982) MR0663723
- Nanda S., Nanda S., On stationary points and the complementarity problem, Bull. Austral. Math. Soc. 21 (1980), 351-356. (1980) MR0585193
- Nath B., Lal S.N., Mukerjee R.N., A generalized non-linear complementarity problem in semi-inner product space, Indian J. Pure Appl. Math. 21:2 (1990), 140-143. (1990) MR1041934
- Noor M.A., On the non-linear complementarity problem, J. Math. Anal. Appl. 123 (1987), 455-460. (1987)
- Noor M.A., Mildly non-linear variational inequalities, Math. Anal. Numer. Theory Approx. 24 (1982), 99-110. (1982) MR0692191
- Noor M.A., Generalized quasi complementarity problems, J. Math. Anal. Appl. 120 (1986), 321-327. (1986)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.