Remarks on bounded sets in ( L F ) t v -spaces

Jerzy Kąkol

Commentationes Mathematicae Universitatis Carolinae (1995)

  • Volume: 36, Issue: 2, page 239-244
  • ISSN: 0010-2628

Abstract

top
We establish the relationship between regularity of a Hausdorff ( L B ) t v -space and its properties like (K), M.c.c., sequential completeness, local completeness. We give a sufficient and necessary condition for a Hausdorff ( L B ) t v -space to be an ( L S ) t v -space. A factorization theorem for ( L N ) t v -spaces with property (K) is also obtained.

How to cite

top

Kąkol, Jerzy. "Remarks on bounded sets in $(LF)_{tv}$-spaces." Commentationes Mathematicae Universitatis Carolinae 36.2 (1995): 239-244. <http://eudml.org/doc/247728>.

@article{Kąkol1995,
abstract = {We establish the relationship between regularity of a Hausdorff $(LB)_\{tv\}$-space and its properties like (K), M.c.c., sequential completeness, local completeness. We give a sufficient and necessary condition for a Hausdorff $(LB)_\{tv\}$-space to be an $(LS)_\{tv\}$-space. A factorization theorem for $(LN)_\{tv\}$-spaces with property (K) is also obtained.},
author = {Kąkol, Jerzy},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {topological vector space; inductive limits; sequential completeness; local completeness; property (K)},
language = {eng},
number = {2},
pages = {239-244},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Remarks on bounded sets in $(LF)_\{tv\}$-spaces},
url = {http://eudml.org/doc/247728},
volume = {36},
year = {1995},
}

TY - JOUR
AU - Kąkol, Jerzy
TI - Remarks on bounded sets in $(LF)_{tv}$-spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 2
SP - 239
EP - 244
AB - We establish the relationship between regularity of a Hausdorff $(LB)_{tv}$-space and its properties like (K), M.c.c., sequential completeness, local completeness. We give a sufficient and necessary condition for a Hausdorff $(LB)_{tv}$-space to be an $(LS)_{tv}$-space. A factorization theorem for $(LN)_{tv}$-spaces with property (K) is also obtained.
LA - eng
KW - topological vector space; inductive limits; sequential completeness; local completeness; property (K)
UR - http://eudml.org/doc/247728
ER -

References

top
  1. Adasch N., Ernst B., Keim D., Topological Vector Spaces, Springer Verlag, Berlin, 1978. Zbl0397.46005MR0487376
  2. Burzyk I., Kliś C., Lipecki Z., On metrizable abelian groups with completeness-type property, Colloq. Math. 49 (1984), 33-39. (1984) MR0774847
  3. Perez-Carreras P., Bonet I., Barrelled locally convex spaces, Math. Studies 131, NorthHolland, 1987. Zbl0614.46001
  4. Dierolf S., Personal communication, . 
  5. Fernandez C., Regularity conditions on ( L F ) -spaces, Arch Math. 54 (1990), 380-383. (1990) Zbl0669.46003MR1042132
  6. Floret K., Lokalkonvexe Sequenzen mit kompakten Abbildungen, I. reine angew. Math. 247 (1972), 155-195. (1972) MR0287271
  7. Floret K., Folgeretraktive Sequenzen Lokalkonvexen Räume, I. reine angew. Math. 259 (1973), 65-85. (1973) MR0313748
  8. Floret K., On bounded sets in inductive limits of normed spaces, Proc. Amer. Math. Soc. 75 (1979), 221-225. (1979) Zbl0425.46055MR0532140
  9. Gilsdorf T.E., Regular inductive limits of K -spaces, Collectanea Math. 42 (1) (1991-92), 45-49. (1991-92) MR1181061
  10. Grothendieck A., Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955). (1955) Zbl0123.30301MR0075539
  11. Iyahen S.O., On certain classes of linear topological spaces, Proc. London Math. Soc. 18 (3) (1968), 285-307. (1968) Zbl0165.14203MR0226358
  12. Kąkol J., Remarks on regular ( L F ) -spaces, Rend. Circ. Mat. di Palermo 42 (1993), 453-458. (1993) Zbl0813.46005MR1283356
  13. Kąkol J., On inductive limits of topological algebras, Colloq. Math. 47 (1982), 71-78. (1982) MR0679386
  14. Labuda I., Lipecki Z., On subseries convergent series and m -quasi-bases in topological linear spaces, Manuscripta Math. 38 (1982), 87-98. (1982) Zbl0496.46006MR0662771
  15. Neus H., Über die Regularitätsbegriffe induktiver lokalkonvexer Sequenzen, Manuscripta Math. 25 (1978), 135-145. (1978) Zbl0389.46058MR0482036
  16. Pfister H., Bemerkungen zum Satz über die Separabilität der Fréchet-Montel-Räume, Arch. Math. 27 (1976), 86-92. (1976) Zbl0318.46005MR0417729
  17. Wagner R., Topological lineare induktive Limiten mit abzählbaren kompakten Spektrum, I. reine angew. Math. 261 (1973), 209-215. (1973) MR0330996
  18. Makarov B.M., Über einige pathologische Eigenschaften induktiver Limiten von B -Räumen (in Russian), Uspehi Mat. Nauk 18 (1963), 171-178. (1963) 
  19. Vogt D., Regularity properties of ( L F ) -spaces, Progress in Functional Analysis (Peniscala 1990), 57-84, North-Holland, Math. Studies 170, North-Holland, Amsterdam, 1992. Zbl0779.46005MR1150738

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.