Upper and lower estimates in Banach sequence spaces

Raquel Gonzalo

Commentationes Mathematicae Universitatis Carolinae (1995)

  • Volume: 36, Issue: 4, page 641-653
  • ISSN: 0010-2628

Abstract

top
Here we study the existence of lower and upper p -estimates of sequences in some Banach sequence spaces. We also compute the sharp p estimates in their basis. Finally, we give some applications to weak sequential continuity of polynomials.

How to cite

top

Gonzalo, Raquel. "Upper and lower estimates in Banach sequence spaces." Commentationes Mathematicae Universitatis Carolinae 36.4 (1995): 641-653. <http://eudml.org/doc/247731>.

@article{Gonzalo1995,
abstract = {Here we study the existence of lower and upper $\ell _p$-estimates of sequences in some Banach sequence spaces. We also compute the sharp $\ell _p$ estimates in their basis. Finally, we give some applications to weak sequential continuity of polynomials.},
author = {Gonzalo, Raquel},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {estimates; polynomials; estimates; polynomials; -estimates; Banach sequence spaces; basis},
language = {eng},
number = {4},
pages = {641-653},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Upper and lower estimates in Banach sequence spaces},
url = {http://eudml.org/doc/247731},
volume = {36},
year = {1995},
}

TY - JOUR
AU - Gonzalo, Raquel
TI - Upper and lower estimates in Banach sequence spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 4
SP - 641
EP - 653
AB - Here we study the existence of lower and upper $\ell _p$-estimates of sequences in some Banach sequence spaces. We also compute the sharp $\ell _p$ estimates in their basis. Finally, we give some applications to weak sequential continuity of polynomials.
LA - eng
KW - estimates; polynomials; estimates; polynomials; -estimates; Banach sequence spaces; basis
UR - http://eudml.org/doc/247731
ER -

References

top
  1. Alencar R., Aron R., Dineen S., A reflexive space of holomorphic functions in infinitely many variables, Proc. Amer. Math. Soc. 90 (1984), 407-411. (1984) Zbl0536.46015MR0728358
  2. Altshuler R.M., Dineen S., Uniform convexity in Lorentz sequence spaces, Israel J. Math. 20 (1975), 260-274. (1975) MR0385517
  3. Aron R.M., Dineen S., Q -reflexive Banach spaces, preprint. Zbl0916.46011MR1627646
  4. Aron R., LaCruz M., Ryan R., Tonge A., The generalized Rademacher functions, Note di Math. 22 (1992), 15-25. (1992) Zbl0844.46002MR1258560
  5. Castillo J.M.F., Sánchez F., Weakly p -compact, p -Banach Saks and superreflexive spaces, to appear in J. Math. Appl. MR1125690
  6. Castillo J.M.F., Sánchez F., Remarks on the basic properties of Tsirelson's space, to appear in Note di Math. 
  7. Farmer J., Polynomial reflexivity in Banach spaces, Israel J. Math. 87 (1994), 257-273. (1994) Zbl0819.46006MR1286830
  8. Farmer J., Johnson W.B., Polynomial Schur and Polynomial Dunford Pettis properties, Contemporary Math. 144 (1993), 95-105. (1993) Zbl0822.46013MR1209450
  9. Fetter H., Gamboa B., The James Forest, book in preparation. Zbl0878.46010
  10. Gonzalo R., Jaramillo J.A., Compact polynomials between Banach spaces, Extracta Math. 8 (1993), 42-48. (1993) Zbl1016.46503MR1270328
  11. Gonzalo R., Jaramillo J.A., Smoothness and estimates in Banach spaces, Israel J. Math. 89 (1995), 321-341. (1995) MR1324468
  12. James R., Superreflexive spaces with basis, Pacific J. Math. 41 (1972), 409-420. (1972) MR0308752
  13. Jaramillo J.A., Prieto A., On the weak polynomial convergence on a Banach space, Proc. Amer. Math. Soc. 118 (1993), 463-468. (1993) MR1126196
  14. Jaramillo J.A., Prieto A., Zalduendo I., The bidual of the space of polynomials on a Banach space, preprint. Zbl0901.46030
  15. Johnson W.B., Odell E., Subspaces of L p which embed into p , Compositio Math. 28 (1974), 37-49. (1974) MR0352938
  16. Knaust H., Orlicz sequence spaces of Banach Saks type, Archiv Math. 59 (1992), 562-565. (1992) Zbl0735.46009MR1189874
  17. Knaust H., Odell E., On c 0 -sequences in Banach spaces, Israel J. Math. 67:2 (1989), 153-169. (1989) MR1026560
  18. Knaust H., Odell E., Weakly null sequences with upper p -estimates, (Longhorn Notes) Lecture Notes in Math. 1470, Springer-Verlag, pp. 85-107. MR1126741
  19. Lohman R.H., Casazza P.G., A general construction of spaces of the type of R.C.James, Can. J. Math. 27:6 (1975), 1263-1270. (1975) Zbl0314.46017MR0399817
  20. Lindenstrauss J., Tzafriri L., Classical Banach Spaces I, II, Springer-Verlag, 1977, 1979. MR0500056
  21. Maleev R.P., Troyanski S.L., Smooth functions in Orlicz spaces, Contemp. Math. 85 (1989), 355-370. (1989) Zbl0691.46010MR0983394
  22. Pelczynski A., A property of multilinear operations, Studia Math. 16 (1957-58), 173-182. (1957-58) Zbl0080.09701MR0093698
  23. Ryan R., Applications of topological tensor spaces to infinite dimensional holomorphy, Ph.D. Thesis, University College, Dublin, 1980. 
  24. Sánchez F., Suceciones débilmente p -sumables en espacios de Banach, Tesis doctoral Universidad de Extremadura, 1991. MR1163592
  25. Zalduendo I., An estimate for multilinear forms on p -spaces, to appear in Proc. Royal Irish Acad. 93A/1 (1993), 137-142. MR1241848

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.