A full descriptive definition of the BV-integral
B. Bongiorno; Luisa Di Piazza; Washek Frank Pfeffer
Commentationes Mathematicae Universitatis Carolinae (1995)
- Volume: 36, Issue: 3, page 461-469
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBongiorno, B., Di Piazza, Luisa, and Pfeffer, Washek Frank. "A full descriptive definition of the BV-integral." Commentationes Mathematicae Universitatis Carolinae 36.3 (1995): 461-469. <http://eudml.org/doc/247732>.
@article{Bongiorno1995,
abstract = {We present a Cauchy test for the almost derivability of additive functions of bounded BV sets. The test yields a full descriptive definition of a coordinate free Riemann type integral.},
author = {Bongiorno, B., Di Piazza, Luisa, Pfeffer, Washek Frank},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Perimeter; partition; gage; absolute continuity; bounded variation; descriptive integrals; variational integral; bounded Caccioppoli set; Gauss-Green theorem},
language = {eng},
number = {3},
pages = {461-469},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A full descriptive definition of the BV-integral},
url = {http://eudml.org/doc/247732},
volume = {36},
year = {1995},
}
TY - JOUR
AU - Bongiorno, B.
AU - Di Piazza, Luisa
AU - Pfeffer, Washek Frank
TI - A full descriptive definition of the BV-integral
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 3
SP - 461
EP - 469
AB - We present a Cauchy test for the almost derivability of additive functions of bounded BV sets. The test yields a full descriptive definition of a coordinate free Riemann type integral.
LA - eng
KW - Perimeter; partition; gage; absolute continuity; bounded variation; descriptive integrals; variational integral; bounded Caccioppoli set; Gauss-Green theorem
UR - http://eudml.org/doc/247732
ER -
References
top- Bongiorno B., Differentiation of set functions, Rend. Circ. Mat. Palermo 26 37-51 (1977). (1977) Zbl0399.28003MR0524331
- Evans L.C., Gariepy R.F., Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992. Zbl0804.28001MR1158660
- Kurzweil J., Jarník J., Equi-integrability and controlled convergence of Perron-type integrable functions, Real Anal. Ex. 17 110-139 (1991:92). (1991:92) MR1147361
- Pfeffer W.F., A descriptive definition of a variational integral and applications, Indiana Univ. Math. J. 40 259-270 (1991). (1991) Zbl0747.26010MR1101229
- Pfeffer W.F., The Gauss-Green theorem, Adv. Math. 87 93-147 (1991). (1991) Zbl0732.26013MR1102966
- Pfeffer W.F., The Riemann Approach to Integration, Cambridge Univ. Press, Cambridge, 1993. Zbl1143.26005MR1268404
- Saks S., Theory of the Integral, Dover, New York, 1964. Zbl0017.30004MR0167578
- Volpert A.I., The spaces BV and quasilinear equations, Math. USSR-SB. 2 255-267 (1967). (1967) MR0216338
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.