Differential equations at resonance

Donal O'Regan

Commentationes Mathematicae Universitatis Carolinae (1995)

  • Volume: 36, Issue: 4, page 673-694
  • ISSN: 0010-2628

Abstract

top
New existence results are presented for the two point singular “resonant” boundary value problem 1 p ( p y ' ) ' + r y + λ m q y = f ( t , y , p y ' ) a.eȯn [ 0 , 1 ] with y satisfying Sturm Liouville or Periodic boundary conditions. Here λ m is the ( m + 1 ) s t eigenvalue of 1 p q [ ( p u ' ) ' + r p u ] + λ u = 0 a.eȯn [ 0 , 1 ] with u satisfying Sturm Liouville or Periodic boundary data.

How to cite

top

O'Regan, Donal. "Differential equations at resonance." Commentationes Mathematicae Universitatis Carolinae 36.4 (1995): 673-694. <http://eudml.org/doc/247735>.

@article{ORegan1995,
abstract = {New existence results are presented for the two point singular “resonant” boundary value problem $\frac\{1\}\{p\}(py^\{\prime \})^\{\prime \}+r y+\lambda _m qy=f(t,y,py^\{\prime \})$ a.eȯn $[0,1]$ with $y$ satisfying Sturm Liouville or Periodic boundary conditions. Here $\lambda _m$ is the $(m+1)^\{st\}$ eigenvalue of $\frac\{1\}\{pq\} [(pu^\{\prime \})^\{\prime \} +rpu] +\lambda u=0$ a.eȯn $[0,1]$ with $u$ satisfying Sturm Liouville or Periodic boundary data.},
author = {O'Regan, Donal},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {boundary value problems; resonance; existence; boundary value problems; eigenvalue; resonance; existence},
language = {eng},
number = {4},
pages = {673-694},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Differential equations at resonance},
url = {http://eudml.org/doc/247735},
volume = {36},
year = {1995},
}

TY - JOUR
AU - O'Regan, Donal
TI - Differential equations at resonance
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 4
SP - 673
EP - 694
AB - New existence results are presented for the two point singular “resonant” boundary value problem $\frac{1}{p}(py^{\prime })^{\prime }+r y+\lambda _m qy=f(t,y,py^{\prime })$ a.eȯn $[0,1]$ with $y$ satisfying Sturm Liouville or Periodic boundary conditions. Here $\lambda _m$ is the $(m+1)^{st}$ eigenvalue of $\frac{1}{pq} [(pu^{\prime })^{\prime } +rpu] +\lambda u=0$ a.eȯn $[0,1]$ with $u$ satisfying Sturm Liouville or Periodic boundary data.
LA - eng
KW - boundary value problems; resonance; existence; boundary value problems; eigenvalue; resonance; existence
UR - http://eudml.org/doc/247735
ER -

References

top
  1. Atkinson F.V., Discrete and continuous boundary problems, Academic Press, New York, 1964. Zbl0169.10601MR0176141
  2. Atkinson F.V., Everitt W.N., Zettl A., Regularization of a Sturm Liouville problem with an interior singularity, Diff. Int. Eq. 1 (1988), 213-221. (1988) Zbl0715.34043MR0922562
  3. Bobisud L.E., O'Regan D., Positive solutions for a class of nonlinear singular boundary value problems at resonance, Jour. Math. Anal. Appl. 184 (1994), 263-284. (1994) Zbl0805.34019MR1278388
  4. Cesari L., Kannan R., Existence of solutions of a nonlinear differential equation, Proc. Amer. Math. Soc. 88 (1983), 605-613. (1983) Zbl0529.34005MR0702284
  5. Fonda A., Mawhin J., Quadratic forms, weighted eigenfunctions and boundary value problems for nonlinear second order ordinary differential equations, Proc. Royal Soc. Edinburgh 112A (1989), 145-153. (1989) Zbl0677.34022MR1007541
  6. Iannacci R., Nkashama M.N., Unbounded perturbations of forced second order ordinary differential equations at resonance, Jour. Diff. Eq. 69 (1987), 289-309. (1987) Zbl0627.34008MR0903389
  7. Iannacci R., Nkashama M.N., Nonlinear two point boundary value problems at resonance without Landesman- Lazer conditions, Proc. Amer. Math. Soc. 106 (1989), 943-952. (1989) MR1004633
  8. Mawhin J., Ward J.R., Periodic solutions of some forced Lienard differential equations at resonance, Archiv der Math. 41 (1983), 337-351. (1983) Zbl0537.34037MR0731606
  9. Mawhin J., Ward J.R., Willem M., Necessary and sufficient conditions for the solvability of a nonlinear two point boundary value problem, Proc. Amer. Math. Soc. 93 (1985), 667-674. (1985) Zbl0559.34014MR0776200
  10. Mawhin J., Willem M., Critical point theory and Hamiltonian systems, Springer Verlag, New York, 1989. Zbl0676.58017MR0982267
  11. Mawhin J., Omano W., Two point boundary value problems for nonlinear perturbations of some singular linear differential equations at resonance, Comment. Math. Univ. Carolinae 30 (1989), 537-550. (1989) MR1031871
  12. Naimark M.A., Linear differential operators Part II, Ungar Publ. Co., London, 1968. Zbl0227.34020MR0262880
  13. Nkashama M.N., Santanilla J., Existence of multiple solutions of some nonlinear boundary value problems, Jour. Diff. Eq. 84 (1990), 148-164. (1990) MR1042663
  14. O'Regan D., Singular Sturm Liouville problems and existence of solutions to singular nonlinear boundary value problems, Nonlinear Anal. 20 (1993), 767-779. (1993) Zbl0780.34017
  15. O'Regan D., Solvability of some two point boundary value problems of Dirichlet, Neumann or Periodic type, Dynamic Systems and Appl. 2 (1993), 163-182. (1993) Zbl0785.34025MR1226995
  16. O'Regan D., Existence principles for second order nonresonant boundary value problems, Jour. Appl. Math. Stoch. Anal. 7 (1994), 487-507. (1994) Zbl0819.34019MR1310923
  17. O'Regan D., Carathéodory theory of nonresonant second order boundary value problems, to appear. Zbl0870.34028
  18. Ramas M., Sanchez L., Variational elliptic problems involving noncoercive functionals, Proc. Roy. Soc. Edinburgh 112A (1989), 177-185. (1989) MR1007543
  19. Sanchez L., Positive solutions for a class of semilinear two point boundary value problems, Bull. Aust. Math. Soc. 45 (1992), 439-451. (1992) Zbl0745.34017MR1165150

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.