Characterizing realcompact spaces as limits of approximate polyhedral systems
Commentationes Mathematicae Universitatis Carolinae (1995)
- Volume: 36, Issue: 4, page 783-793
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMatijević, Vlasta. "Characterizing realcompact spaces as limits of approximate polyhedral systems." Commentationes Mathematicae Universitatis Carolinae 36.4 (1995): 783-793. <http://eudml.org/doc/247742>.
@article{Matijević1995,
abstract = {Realcompact spaces can be characterized as limits of approximate inverse systems of Polish polyhedra.},
author = {Matijević, Vlasta},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {approximate inverse system; approximate inverse limit; approximate resolution $\operatorname\{mod\}\, \mathcal \{P\}$; realcompact space; Lindelöf space; Polish space; non-measurable cardinal; approximate inverse limit; approximate resolution mod ; non-measurable cardinal; realcompact spaces; Lindelöf spaces; Polish spaces; approximate inverse system},
language = {eng},
number = {4},
pages = {783-793},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Characterizing realcompact spaces as limits of approximate polyhedral systems},
url = {http://eudml.org/doc/247742},
volume = {36},
year = {1995},
}
TY - JOUR
AU - Matijević, Vlasta
TI - Characterizing realcompact spaces as limits of approximate polyhedral systems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 4
SP - 783
EP - 793
AB - Realcompact spaces can be characterized as limits of approximate inverse systems of Polish polyhedra.
LA - eng
KW - approximate inverse system; approximate inverse limit; approximate resolution $\operatorname{mod}\, \mathcal {P}$; realcompact space; Lindelöf space; Polish space; non-measurable cardinal; approximate inverse limit; approximate resolution mod ; non-measurable cardinal; realcompact spaces; Lindelöf spaces; Polish spaces; approximate inverse system
UR - http://eudml.org/doc/247742
ER -
References
top- Čerin Z., Recognizing approximate -tameness, Acta Math. Univ. Comenianae 62:2 (1993), 207-219. (1993) Zbl0846.54010MR1270508
- Engelking R., General Topology, Monografie Matematyczne 60, Polish Scientific Publishers, Warszawa, 1977. Zbl0684.54001MR0500780
- Fedorchuk V.V., Chigogidze A.Ch., Absolute Retracts and Infinite Dimensional Manifolds (Russian), Nauka, Moscow, 1992. MR1202238
- Gillman L., Jerison M., Rings of Continuous Functions, D. van Nostrand Co., Princeton, 1960. Zbl0327.46040MR0116199
- Sze-Tsen Hu, Theory of Retracts, Wayne State University Press, Detroit, 1965. Zbl0029.32203MR0181977
- Mardešić S., Strong shape of the Stone-Čech compactification, Comment. Math. Univ. Carolinae 33:3 (1992), 533-539. (1992) MR1209294
- Mardešić S., Matijević V., -like spaces are limits of approximate -resolution, Topology Appl. 45 (1992), 189-202. (1992) MR1180809
- Mardešić S., Rubin L.R., Approximate inverse systems of compacta and covering dimension, Pacific J. Math. 138 (1989), 129-144. (1989) MR0992178
- Mardešić S., Segal J., Shape Theory, North-Holland Publ. Co., Amsterdam, 1982. MR0676973
- Mardešić S., Uglešić N., On irreducible mappings into polyhedra, Topology Appl. 61 (1995), 187-203. (1995) MR1314618
- Mardešić S., Watanabe T., Approximate resolutions of spaces and mappings, Glasnik Mat. 24 (1989), 587-637. (1989) MR1080085
- Matijević V., Spaces having approximate resolutions consisting of finite-dimensional polyhedra, Publ. Math. Debrecen, to appear. MR1336370
- Mrowka S., An elementary proof of Katětov’s theorem concerning -spaces, Michigan Math. J. 11 (1964), 61-63. (1964) Zbl0117.16002MR0161308
- Nagata J., Modern General Topology, North-Holland Publ. Co., Amsterdam, 1968. Zbl0598.54001MR0264579
- Pasynkov B.A., On the spectral decomposition of topological spaces (Russian), Mat. Sb. 66 (1965), 35-79. (1965) MR0172236
- Shirota T., A class of topological spaces, Osaka Math. J. 4 (1952), 23-40. (1952) Zbl0047.41704MR0050872
- Spanier E.H., Algebraic Topology, McGraw-Hill, New York, 1966. Zbl0810.55001MR0210112
- Watanabe T., Approximate resolutions and covering dimension, Topology Appl. 38 (1991), 147-154. (1991) Zbl0716.54021MR1094547
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.