Characterizing realcompact spaces as limits of approximate polyhedral systems

Vlasta Matijević

Commentationes Mathematicae Universitatis Carolinae (1995)

  • Volume: 36, Issue: 4, page 783-793
  • ISSN: 0010-2628

Abstract

top
Realcompact spaces can be characterized as limits of approximate inverse systems of Polish polyhedra.

How to cite

top

Matijević, Vlasta. "Characterizing realcompact spaces as limits of approximate polyhedral systems." Commentationes Mathematicae Universitatis Carolinae 36.4 (1995): 783-793. <http://eudml.org/doc/247742>.

@article{Matijević1995,
abstract = {Realcompact spaces can be characterized as limits of approximate inverse systems of Polish polyhedra.},
author = {Matijević, Vlasta},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {approximate inverse system; approximate inverse limit; approximate resolution $\operatorname\{mod\}\, \mathcal \{P\}$; realcompact space; Lindelöf space; Polish space; non-measurable cardinal; approximate inverse limit; approximate resolution mod ; non-measurable cardinal; realcompact spaces; Lindelöf spaces; Polish spaces; approximate inverse system},
language = {eng},
number = {4},
pages = {783-793},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Characterizing realcompact spaces as limits of approximate polyhedral systems},
url = {http://eudml.org/doc/247742},
volume = {36},
year = {1995},
}

TY - JOUR
AU - Matijević, Vlasta
TI - Characterizing realcompact spaces as limits of approximate polyhedral systems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 4
SP - 783
EP - 793
AB - Realcompact spaces can be characterized as limits of approximate inverse systems of Polish polyhedra.
LA - eng
KW - approximate inverse system; approximate inverse limit; approximate resolution $\operatorname{mod}\, \mathcal {P}$; realcompact space; Lindelöf space; Polish space; non-measurable cardinal; approximate inverse limit; approximate resolution mod ; non-measurable cardinal; realcompact spaces; Lindelöf spaces; Polish spaces; approximate inverse system
UR - http://eudml.org/doc/247742
ER -

References

top
  1. Čerin Z., Recognizing approximate ( 𝒜 , , 𝒞 ) -tameness, Acta Math. Univ. Comenianae 62:2 (1993), 207-219. (1993) Zbl0846.54010MR1270508
  2. Engelking R., General Topology, Monografie Matematyczne 60, Polish Scientific Publishers, Warszawa, 1977. Zbl0684.54001MR0500780
  3. Fedorchuk V.V., Chigogidze A.Ch., Absolute Retracts and Infinite Dimensional Manifolds (Russian), Nauka, Moscow, 1992. MR1202238
  4. Gillman L., Jerison M., Rings of Continuous Functions, D. van Nostrand Co., Princeton, 1960. Zbl0327.46040MR0116199
  5. Sze-Tsen Hu, Theory of Retracts, Wayne State University Press, Detroit, 1965. Zbl0029.32203MR0181977
  6. Mardešić S., Strong shape of the Stone-Čech compactification, Comment. Math. Univ. Carolinae 33:3 (1992), 533-539. (1992) MR1209294
  7. Mardešić S., Matijević V., 𝒫 -like spaces are limits of approximate 𝒫 -resolution, Topology Appl. 45 (1992), 189-202. (1992) MR1180809
  8. Mardešić S., Rubin L.R., Approximate inverse systems of compacta and covering dimension, Pacific J. Math. 138 (1989), 129-144. (1989) MR0992178
  9. Mardešić S., Segal J., Shape Theory, North-Holland Publ. Co., Amsterdam, 1982. MR0676973
  10. Mardešić S., Uglešić N., On irreducible mappings into polyhedra, Topology Appl. 61 (1995), 187-203. (1995) MR1314618
  11. Mardešić S., Watanabe T., Approximate resolutions of spaces and mappings, Glasnik Mat. 24 (1989), 587-637. (1989) MR1080085
  12. Matijević V., Spaces having approximate resolutions consisting of finite-dimensional polyhedra, Publ. Math. Debrecen, to appear. MR1336370
  13. Mrowka S., An elementary proof of Katětov’s theorem concerning Q -spaces, Michigan Math. J. 11 (1964), 61-63. (1964) Zbl0117.16002MR0161308
  14. Nagata J., Modern General Topology, North-Holland Publ. Co., Amsterdam, 1968. Zbl0598.54001MR0264579
  15. Pasynkov B.A., On the spectral decomposition of topological spaces (Russian), Mat. Sb. 66 (1965), 35-79. (1965) MR0172236
  16. Shirota T., A class of topological spaces, Osaka Math. J. 4 (1952), 23-40. (1952) Zbl0047.41704MR0050872
  17. Spanier E.H., Algebraic Topology, McGraw-Hill, New York, 1966. Zbl0810.55001MR0210112
  18. Watanabe T., Approximate resolutions and covering dimension, Topology Appl. 38 (1991), 147-154. (1991) Zbl0716.54021MR1094547

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.