Whitney blocks in the hyperspace of a finite graph

Alejandro Illanes

Commentationes Mathematicae Universitatis Carolinae (1995)

  • Volume: 36, Issue: 1, page 137-147
  • ISSN: 0010-2628

Abstract

top
Let X be a finite graph. Let C ( X ) be the hyperspace of all nonempty subcontinua of X and let μ : C ( X ) be a Whitney map. We prove that there exist numbers 0 < T 0 < T 1 < T 2 < < T M = μ ( X ) such that if T ( T i - 1 , T i ) , then the Whitney block μ - 1 ( T i - 1 , T i ) is homeomorphic to the product μ - 1 ( T ) × ( T i - 1 , T i ) . We also show that there exists only a finite number of topologically different Whitney levels for C ( X ) .

How to cite

top

Illanes, Alejandro. "Whitney blocks in the hyperspace of a finite graph." Commentationes Mathematicae Universitatis Carolinae 36.1 (1995): 137-147. <http://eudml.org/doc/247751>.

@article{Illanes1995,
abstract = {Let $X$ be a finite graph. Let $C(X)$ be the hyperspace of all nonempty subcontinua of $X$ and let $\mu :C(X)\rightarrow \mathbb \{R\}$ be a Whitney map. We prove that there exist numbers $0<T_0<T_1<T_2<\dots <T_M=\mu (X)$ such that if $T\in (T_\{i-1\},T_i)$, then the Whitney block $\mu ^\{-1\} (T_\{i-1\},T_i)$ is homeomorphic to the product $\mu ^\{-1\}(T)\times (T_\{i-1\},T_i)$. We also show that there exists only a finite number of topologically different Whitney levels for $C(X)$.},
author = {Illanes, Alejandro},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {hyperspaces; Whitney levels; Whitney blocks; finite graphs; finite graph; Whitney map; Whitney levels; Whitney block},
language = {eng},
number = {1},
pages = {137-147},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Whitney blocks in the hyperspace of a finite graph},
url = {http://eudml.org/doc/247751},
volume = {36},
year = {1995},
}

TY - JOUR
AU - Illanes, Alejandro
TI - Whitney blocks in the hyperspace of a finite graph
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 1
SP - 137
EP - 147
AB - Let $X$ be a finite graph. Let $C(X)$ be the hyperspace of all nonempty subcontinua of $X$ and let $\mu :C(X)\rightarrow \mathbb {R}$ be a Whitney map. We prove that there exist numbers $0<T_0<T_1<T_2<\dots <T_M=\mu (X)$ such that if $T\in (T_{i-1},T_i)$, then the Whitney block $\mu ^{-1} (T_{i-1},T_i)$ is homeomorphic to the product $\mu ^{-1}(T)\times (T_{i-1},T_i)$. We also show that there exists only a finite number of topologically different Whitney levels for $C(X)$.
LA - eng
KW - hyperspaces; Whitney levels; Whitney blocks; finite graphs; finite graph; Whitney map; Whitney levels; Whitney block
UR - http://eudml.org/doc/247751
ER -

References

top
  1. Duda R., On the hyperspace of subcontinua of a finite graph, Fund. Math. 62 (1968), 265-286. (1968) Zbl0179.28101MR0236881
  2. Duda R., On the hyperspace of subcontinua of a finite graph, Fund. Math. 63 (1968), 225-255. (1968) Zbl0179.28101MR0236882
  3. Duda R., Correction to the paper ``On the hyperspace of subcontinua of a finite graph I, Fund. Math. 69 (1970), 207-211. (1970) MR0273575
  4. Kato H., Whitney continua of curves, Trans. Amer. Math. Soc. 300 (1987), 367-381. (1987) Zbl0621.54006MR0871681
  5. Kato H., Whitney continua of graphs admit all homotopy types of compact connected ANRs, Fund. Math 129 (1988), 161-166. (1988) Zbl0652.55013MR0962537
  6. Kato H., A note on fundamental dimensions of Whitney continua of graphs, J. Math. Soc. Japan 41 (1989), 243-250. (1989) Zbl0651.54002MR0984749
  7. Montejano-Peimbert L., Puga-Espinosa I., Shore points in dendroids and conical pointed hyperspaces, to appear in Top. Appl. Zbl0789.54010MR1177162
  8. Nadler S.B., Jr., Hyperspaces of sets, Marcel Dekker, New York, Basel, 1978. Zbl1125.54001MR0500811
  9. Nadler S.B., Jr., Continua whose hyperspace is a product, Fund. Math. 108 (1980), 49-66. (1980) Zbl0456.54023MR0585559
  10. Puga-Espinosa I., Hiperespacios con punta de cono, Tesis doctoral, Facultad de Ciencias, Universidad Nacional Autónoma de México, 1989. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.