Whitney blocks in the hyperspace of a finite graph
Commentationes Mathematicae Universitatis Carolinae (1995)
- Volume: 36, Issue: 1, page 137-147
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topIllanes, Alejandro. "Whitney blocks in the hyperspace of a finite graph." Commentationes Mathematicae Universitatis Carolinae 36.1 (1995): 137-147. <http://eudml.org/doc/247751>.
@article{Illanes1995,
abstract = {Let $X$ be a finite graph. Let $C(X)$ be the hyperspace of all nonempty subcontinua of $X$ and let $\mu :C(X)\rightarrow \mathbb \{R\}$ be a Whitney map. We prove that there exist numbers $0<T_0<T_1<T_2<\dots <T_M=\mu (X)$ such that if $T\in (T_\{i-1\},T_i)$, then the Whitney block $\mu ^\{-1\} (T_\{i-1\},T_i)$ is homeomorphic to the product $\mu ^\{-1\}(T)\times (T_\{i-1\},T_i)$. We also show that there exists only a finite number of topologically different Whitney levels for $C(X)$.},
author = {Illanes, Alejandro},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {hyperspaces; Whitney levels; Whitney blocks; finite graphs; finite graph; Whitney map; Whitney levels; Whitney block},
language = {eng},
number = {1},
pages = {137-147},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Whitney blocks in the hyperspace of a finite graph},
url = {http://eudml.org/doc/247751},
volume = {36},
year = {1995},
}
TY - JOUR
AU - Illanes, Alejandro
TI - Whitney blocks in the hyperspace of a finite graph
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 1
SP - 137
EP - 147
AB - Let $X$ be a finite graph. Let $C(X)$ be the hyperspace of all nonempty subcontinua of $X$ and let $\mu :C(X)\rightarrow \mathbb {R}$ be a Whitney map. We prove that there exist numbers $0<T_0<T_1<T_2<\dots <T_M=\mu (X)$ such that if $T\in (T_{i-1},T_i)$, then the Whitney block $\mu ^{-1} (T_{i-1},T_i)$ is homeomorphic to the product $\mu ^{-1}(T)\times (T_{i-1},T_i)$. We also show that there exists only a finite number of topologically different Whitney levels for $C(X)$.
LA - eng
KW - hyperspaces; Whitney levels; Whitney blocks; finite graphs; finite graph; Whitney map; Whitney levels; Whitney block
UR - http://eudml.org/doc/247751
ER -
References
top- Duda R., On the hyperspace of subcontinua of a finite graph, Fund. Math. 62 (1968), 265-286. (1968) Zbl0179.28101MR0236881
- Duda R., On the hyperspace of subcontinua of a finite graph, Fund. Math. 63 (1968), 225-255. (1968) Zbl0179.28101MR0236882
- Duda R., Correction to the paper ``On the hyperspace of subcontinua of a finite graph I, Fund. Math. 69 (1970), 207-211. (1970) MR0273575
- Kato H., Whitney continua of curves, Trans. Amer. Math. Soc. 300 (1987), 367-381. (1987) Zbl0621.54006MR0871681
- Kato H., Whitney continua of graphs admit all homotopy types of compact connected ANRs, Fund. Math 129 (1988), 161-166. (1988) Zbl0652.55013MR0962537
- Kato H., A note on fundamental dimensions of Whitney continua of graphs, J. Math. Soc. Japan 41 (1989), 243-250. (1989) Zbl0651.54002MR0984749
- Montejano-Peimbert L., Puga-Espinosa I., Shore points in dendroids and conical pointed hyperspaces, to appear in Top. Appl. Zbl0789.54010MR1177162
- Nadler S.B., Jr., Hyperspaces of sets, Marcel Dekker, New York, Basel, 1978. Zbl1125.54001MR0500811
- Nadler S.B., Jr., Continua whose hyperspace is a product, Fund. Math. 108 (1980), 49-66. (1980) Zbl0456.54023MR0585559
- Puga-Espinosa I., Hiperespacios con punta de cono, Tesis doctoral, Facultad de Ciencias, Universidad Nacional Autónoma de México, 1989.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.