The fundamental theorem of dynamical systems
Commentationes Mathematicae Universitatis Carolinae (1995)
- Volume: 36, Issue: 3, page 585-597
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topReferences
top- Anosov D.V., Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature, Proceedings of the Steklov Institute of Mathematics, Vol. 90, American Mathematical Society, Providence, R.I., 1969. Zbl0135.40402MR0242194
- Block L., Franke J.E., The chain recurrent set, attractors, and explosions, Ergodic Theory and Dynamical Systems 5 (1985), 321-327. (1985) Zbl0572.54037MR0805832
- Bowen R., Equilibrium States and the Ergodic Theory of Axiom A Diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer Verlag, New York, 1975. MR0442989
- Bowen R., On Axiom A Diffeomorphisms, CBMS Regional Conference Series in Mathematics, Vol. 35, American Mathematical Society, Providence, R.I., 1978. Zbl0383.58010MR0482842
- Conley C., The Gradient Structure of a Flow, I, IBM RC 3932, #17806, 1972; reprinted in Ergodic Theory and Dynamical Systems 8* (1988), 11-26. (1988) Zbl0687.58033MR0967626
- Conley C., Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, Vol. 38, American Mathematical Society, Providence, R.I., 1978. Zbl0397.34056MR0511133
- Easton R., Isolating blocks and epsilon chains for maps, Physica D 39 (1989), 95-110. (1989) Zbl0696.58042MR1021184
- Franks J., Book review, Ergodic Theory and Dynamical Systems 7 (1987), 313-315. (1987) MR0967632
- Franks J., A Variation on the Poincaré-Birkhoff Theorem, in: Hamiltonian Dynamical Systems, K.R. Meyer and D.G. Saari, eds., American Mathematical Society, Providence, R.I., 1988, pp. 111-117. Zbl0679.58026MR0986260
- Hurley M., Chain recurrence and attraction in non-compact spaces, Ergodic Theory and Dynamical Systems 11 (1991), 709-729. (1991) Zbl0785.58033MR1145617
- McGehee R.P., Some Metric Properties of Attractors with Applications to Computer Simulations of Dynamical Systems, preprint, 1988.
- Milnor J., On the concept of attractor, Communications in Mathematical Physics 99 (1985), 177-195. (1985) Zbl0602.58030MR0790735
- Norton D.E., Coarse-Grain Dynamics and the Conley Decomposition Theorem, submitted, 1994.
- Norton D.E., The Conley Decomposition Theorem for Maps: A Metric Approach, submitted, 1994. Zbl0856.58028MR1366526
- Norton D.E., A Metric Approach to the Conley Decomposition Theorem, Thesis, University of Minnesota, 1989.
- Ruelle D., Small random perturbations of dynamical systems and the definition of attractors, Communications in Mathematical Physics 82 (1981), 137-151. (1981) Zbl0482.58017MR0638517