Concerning weak * -extreme points

Eva Matoušková

Commentationes Mathematicae Universitatis Carolinae (1995)

  • Volume: 36, Issue: 2, page 245-248
  • ISSN: 0010-2628

Abstract

top
Every separable nonreflexive Banach space admits an equivalent norm such that the set of the weak * -extreme points of the unit ball is discrete.

How to cite

top

Matoušková, Eva. "Concerning weak$^*$-extreme points." Commentationes Mathematicae Universitatis Carolinae 36.2 (1995): 245-248. <http://eudml.org/doc/247772>.

@article{Matoušková1995,
abstract = {Every separable nonreflexive Banach space admits an equivalent norm such that the set of the weak$^*$-extreme points of the unit ball is discrete.},
author = {Matoušková, Eva},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {weak$^*$-extreme points; equivalent norm; nonreflexive Banach spaces; nonreflexive Banach spaces; separable nonreflexive Banach space; equivalent norm; -extreme points of the unit ball},
language = {eng},
number = {2},
pages = {245-248},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Concerning weak$^*$-extreme points},
url = {http://eudml.org/doc/247772},
volume = {36},
year = {1995},
}

TY - JOUR
AU - Matoušková, Eva
TI - Concerning weak$^*$-extreme points
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1995
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 36
IS - 2
SP - 245
EP - 248
AB - Every separable nonreflexive Banach space admits an equivalent norm such that the set of the weak$^*$-extreme points of the unit ball is discrete.
LA - eng
KW - weak$^*$-extreme points; equivalent norm; nonreflexive Banach spaces; nonreflexive Banach spaces; separable nonreflexive Banach space; equivalent norm; -extreme points of the unit ball
UR - http://eudml.org/doc/247772
ER -

References

top
  1. Godun B.V., Preserved extreme points, Funct. Anal. i Prilož. 19 (1985), 76-77. (1985) Zbl0591.46004MR0800926
  2. Godun B.V., Bor-Luh Lin, Troyanski S.L., On the strongly extreme points of convex bodies in separable Banach spaces, Proc. AMS 114 (1992), 673-675. (1992) MR1070518
  3. James R.C., Characterizations of reflexivity, Studia Math. 23 (1964), 205-216. (1964) Zbl0113.09303MR0170192
  4. Lindenstrauss J., Phelps R.R., Extreme point properties of convex bodies in reflexive Banach spaces, Israel J. Math. 6 (1968), 39-48. (1968) Zbl0157.43802MR0234260
  5. Phelps R.R., Dentability and extreme points in Banach spaces, Journal of Functional Analysis 17 (1974), 78-90. (1974) Zbl0287.46026MR0352941
  6. Rosenthal H.P., On norm-attaining functionals and the equivalence of the weak * -KMP with the RNP, Longhorn Notes, The University of Texas at Austin, 1985/86, pp. 1-12. MR1017038
  7. Stegall C., Vorlesungen aus dem Fachbereich Mathematik der Universität Essen, Heft 10, 1983, pp. 1-61. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.