On an extremal problem

Krystyna Zyskowska

Mathematica Bohemica (1995)

  • Volume: 120, Issue: 2, page 113-124
  • ISSN: 0862-7959

Abstract

top
Let S denote the class of functions f ( z ) = z + a 2 z 2 + a 3 z 3 + ... univalent and holomorphic in the unit disc 𝛥 = { z | z | < 1 } . In the paper we obtain a sharp estimate of the functional | a 3 - α a 2 2 | + α | a 2 | 2 in the class S for an arbitrary α .

How to cite

top

Zyskowska, Krystyna. "On an extremal problem." Mathematica Bohemica 120.2 (1995): 113-124. <http://eudml.org/doc/247795>.

@article{Zyskowska1995,
abstract = {Let $S$ denote the class of functions $f(z) = z + a_2z^2 + a_3z^3 + \ldots $ univalent and holomorphic in the unit disc $\varDelta = \lbrace z |z| < 1\rbrace $. In the paper we obtain a sharp estimate of the functional $|a_3 - \alpha a^2_2| + \alpha |a_2|^2$ in the class $S$ for an arbitrary $\alpha \in \mathbb \{R\}$.},
author = {Zyskowska, Krystyna},
journal = {Mathematica Bohemica},
keywords = {coefficient problems; Koebe function; univalent function; coefficient problems; Koebe function},
language = {eng},
number = {2},
pages = {113-124},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On an extremal problem},
url = {http://eudml.org/doc/247795},
volume = {120},
year = {1995},
}

TY - JOUR
AU - Zyskowska, Krystyna
TI - On an extremal problem
JO - Mathematica Bohemica
PY - 1995
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 120
IS - 2
SP - 113
EP - 124
AB - Let $S$ denote the class of functions $f(z) = z + a_2z^2 + a_3z^3 + \ldots $ univalent and holomorphic in the unit disc $\varDelta = \lbrace z |z| < 1\rbrace $. In the paper we obtain a sharp estimate of the functional $|a_3 - \alpha a^2_2| + \alpha |a_2|^2$ in the class $S$ for an arbitrary $\alpha \in \mathbb {R}$.
LA - eng
KW - coefficient problems; Koebe function; univalent function; coefficient problems; Koebe function
UR - http://eudml.org/doc/247795
ER -

References

top
  1. L. Bieberbach, Über die Koeffizienten derjenigen Potenzreihen, welche schlichte Abbildung des Einheitskreises vermitteln, Preuss. Akad. deг Wiss. Sitzungsb. 38 (1916), 940-955. Berlin. (1916) 
  2. G. M. Goluzin, Some questions of the theory of univalent functions, Trudy Mat. Inst. Steklov 27 (1949), 51-56. (In Russian.) (1949) MR0042510
  3. Z. J. Jakubowski K. Zyskowska, On an estimate of some functional in the class of holomorphic univalent functions, Mathematica Bohemica 118 (1993), 281-296. (1993) MR1239123
  4. J. A. Jenkins, On certain coefficients on univalent functions, Princ. Univ. Press, New Jeгsey, 1960, pp. 159-194. (1960) MR0117345
  5. W. Ma D. Minda, Uniformly convex functions II, To appear in Ann. Polon. Math. Zbl0792.30008MR1244399
  6. A. C. Schaeffer D. C. Spencer, Coefficient regions for schlicht functions, Amer. Math. Soc., Colloq. Publ. 35 (1950), 36-37. (1950) MR0037908

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.