Inertial law of quadratic forms on modules over plural algebra
Mathematica Bohemica (1995)
- Volume: 120, Issue: 3, page 255-263
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topJukl, Marek. "Inertial law of quadratic forms on modules over plural algebra." Mathematica Bohemica 120.3 (1995): 255-263. <http://eudml.org/doc/247806>.
@article{Jukl1995,
abstract = {Quadratic forms on a free finite-dimensional module are investigated. It is shown that the inertial law can be suitably generalized provided the vector space is replaced by a free finite-dimensional module over a certain linear algebra over $\mathbb \{R\}$ ( real plural algebra) introduced in [1].},
author = {Jukl, Marek},
journal = {Mathematica Bohemica},
keywords = {quadratic forms over a real plural algebra; plural signature; inertia theorem; free module; bilinear form; polar basis; linear algebra; quadratic form; quadratic forms over a real plural algebra; plural signature; inertia theorem; free module; bilinear form; polar basis},
language = {eng},
number = {3},
pages = {255-263},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Inertial law of quadratic forms on modules over plural algebra},
url = {http://eudml.org/doc/247806},
volume = {120},
year = {1995},
}
TY - JOUR
AU - Jukl, Marek
TI - Inertial law of quadratic forms on modules over plural algebra
JO - Mathematica Bohemica
PY - 1995
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 120
IS - 3
SP - 255
EP - 263
AB - Quadratic forms on a free finite-dimensional module are investigated. It is shown that the inertial law can be suitably generalized provided the vector space is replaced by a free finite-dimensional module over a certain linear algebra over $\mathbb {R}$ ( real plural algebra) introduced in [1].
LA - eng
KW - quadratic forms over a real plural algebra; plural signature; inertia theorem; free module; bilinear form; polar basis; linear algebra; quadratic form; quadratic forms over a real plural algebra; plural signature; inertia theorem; free module; bilinear form; polar basis
UR - http://eudml.org/doc/247806
ER -
References
top- M. Jukl, Linear forms on free modules over certain local ring, Acta UP Olomouc, Fac. rer. nat. 110; Matematica 32 (1993), 49-62. (1993) Zbl0810.13006MR1273169
- M. F. Atiyah, I. G. MacDonald, Introduction to commutative algebra, Addison-Wesley, Reading, Massachusetts, 1969. (1969) Zbl0175.03601MR0242802
- B. R. McDonald, Geometric algebra over local rings, Pure and applied mathematics. New York, 1976. (1976) Zbl0346.20027MR0476639
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.