Natural divisors and the brownian motion

Eugenijus Manstavičius

Journal de théorie des nombres de Bordeaux (1996)

  • Volume: 8, Issue: 1, page 159-171
  • ISSN: 1246-7405

Abstract

top
A model of the Brownian motion defined in terms of the natural divisors is proposed and weak convergence of the related measures in the space 𝐃 [0,1] is proved. An analogon of the Erdös arcsine law, known for the prime divisors [6] (see [14] for the proof), is obtained. These results together with the author’s investigation [15] extend the systematic study [9] of the distribution of natural divisors. Our approach is based upon the functional limit theorems of probability theory.

How to cite

top

Manstavičius, Eugenijus. "Natural divisors and the brownian motion." Journal de théorie des nombres de Bordeaux 8.1 (1996): 159-171. <http://eudml.org/doc/247819>.

@article{Manstavičius1996,
abstract = {A model of the Brownian motion defined in terms of the natural divisors is proposed and weak convergence of the related measures in the space $\mathbf \{D\}$ [0,1] is proved. An analogon of the Erdös arcsine law, known for the prime divisors [6] (see [14] for the proof), is obtained. These results together with the author’s investigation [15] extend the systematic study [9] of the distribution of natural divisors. Our approach is based upon the functional limit theorems of probability theory.},
author = {Manstavičius, Eugenijus},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {arithmetical functions; Brownian motion; random variables; random process; Wiener process; arcsine laws; divisors},
language = {eng},
number = {1},
pages = {159-171},
publisher = {Université Bordeaux I},
title = {Natural divisors and the brownian motion},
url = {http://eudml.org/doc/247819},
volume = {8},
year = {1996},
}

TY - JOUR
AU - Manstavičius, Eugenijus
TI - Natural divisors and the brownian motion
JO - Journal de théorie des nombres de Bordeaux
PY - 1996
PB - Université Bordeaux I
VL - 8
IS - 1
SP - 159
EP - 171
AB - A model of the Brownian motion defined in terms of the natural divisors is proposed and weak convergence of the related measures in the space $\mathbf {D}$ [0,1] is proved. An analogon of the Erdös arcsine law, known for the prime divisors [6] (see [14] for the proof), is obtained. These results together with the author’s investigation [15] extend the systematic study [9] of the distribution of natural divisors. Our approach is based upon the functional limit theorems of probability theory.
LA - eng
KW - arithmetical functions; Brownian motion; random variables; random process; Wiener process; arcsine laws; divisors
UR - http://eudml.org/doc/247819
ER -

References

top
  1. [1] G.J. Babu, Probabilistic methods in the theory of arithmetic functions, Ph.D. dissertation, The Indian Statistical Institute, Calcutta, (1973). 
  2. [2] P. Billingsley, Convergence of Probability Measures, Wiley & Sons, New York, (1968). Zbl0172.21201MR233396
  3. [3] P. Billingsley, Additive functions and Brownian motion, Notices Amer. Math. Soc.17 (1970), 1050. 
  4. [4] P. Billingsley, The probability theory of additive arithmetic functions, The Annals of Probab. 2 No 5 (1974), 749-791. Zbl0327.10055MR466055
  5. [5] J.-M. Deshouillers, F. Dress & G. Tenenbaum, Lois de répartition des diviseurs, 1, Acta Arithm34 (1979), 273-285. Zbl0408.10035MR543201
  6. [6] P. Erdös, On the distribution of prime divisors, Aequationes Math.2 (1969), 177-183. Zbl0174.08104MR244178
  7. [7] P. Erdös, M. Kac, On the number of positive sums of independent random variables, Bull. of the American Math. Soc.53 (1947), 1011-1020. Zbl0032.03502MR23011
  8. [8] B. Grigelionis, R. Mikulevičius, On the functional limit theorems of the probabilistic number theory, Lithuanian Math.J.24 No 2 (1984), 72-81, (Russian). Zbl0565.10051MR773596
  9. [9] R.R. Hall, G. Tenenbaum, Divisors, Cambridge University PressCambridge (1988). Zbl0653.10001MR964687
  10. [10] J. Kubilius, Probabilistic Methods in the Theory of NumbersTransl. Math. Monographs, Amer.Math.Soc., Providence, R.I.11 (1964). Zbl0133.30203MR160745
  11. [11] M. Loève, Probabality Theory, D. van Nostrand Company, New York (1963), (3rd edition). Zbl0108.14202MR203748
  12. [12] E. Manstavičius, Arithmetic simulation of stochastic processes, Lithuanian Math. J.24 No 3 (1984)), 276-285. Zbl0565.10052
  13. [13] E. Manstavičius, An invariance principle for additive arithmetic functions, Soviet Math. Dokl.37 No 1 (1988), 259-263. Zbl0689.10057MR947794
  14. [14] E. Manstavičius, "Probability Theory and Mathematical Statistics. Proceedings of the Sixth Vilnius Conference" (1993) B.Grigelionis et al Eds) VSP/TEV, (1994), 533-539. Zbl0849.11067MR1649597
  15. [15] E. Manstavičius, Functional approach in the divisor distribution problems, Acta Math. Hungarica66 No 3 (1995), 343-359. Zbl0823.11045MR1316707
  16. [16] W. Philipp, Arithmetic functions and Brownian motion, Proc. Sympos. Pure Math.24 (1973), 233-246. Zbl0269.10031MR354602
  17. [17] I.Z. Ruzsa, Effective results in probabilistic number theory, In, Théorie élémentaire et analytique des nombres ed. J.Coquet, 107-130, Dépt. Math. Univ.Valenciennes,. 
  18. [18] G. Tenenbaum, Lois de répartition des diviseurs, 4, Ann. Inst. Fourier29 (1979), 1-15. Zbl0403.10029MR552957
  19. [19] N.M. Timofeev, Ch.Ch. Usmanov, On arithmetical modelling of the Brownian motion, Dokl. Acad. Sci. Tadz.SSR25 No 4 (1982), 207-211, (Russian). Zbl0504.10030MR686370
  20. [20] N.M. Timofeev, Ch.Ch. Usmanov, On arithmetical modelling of random processes with independent increments, Dokl. Acad. Sci. TadzSSR27 No 10 (1984), 556-559, (Russian). Zbl0577.10044MR784689

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.