À propos de la série n = 1 + x n q n - 1

Daniel Duverney

Journal de théorie des nombres de Bordeaux (1996)

  • Volume: 8, Issue: 1, page 173-181
  • ISSN: 1246-7405

How to cite

top

Duverney, Daniel. "À propos de la série $\sum \limits _{n = 1}^{+ \infty } \frac{x^n}{q^n - 1}$." Journal de théorie des nombres de Bordeaux 8.1 (1996): 173-181. <http://eudml.org/doc/247825>.

@article{Duverney1996,
author = {Duverney, Daniel},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {linear independence over a field; irrationality; imaginary quadratic number field; Padé approximation},
language = {fre},
number = {1},
pages = {173-181},
publisher = {Université Bordeaux I},
title = {À propos de la série $\sum \limits _\{n = 1\}^\{+ \infty \} \frac\{x^n\}\{q^n - 1\}$},
url = {http://eudml.org/doc/247825},
volume = {8},
year = {1996},
}

TY - JOUR
AU - Duverney, Daniel
TI - À propos de la série $\sum \limits _{n = 1}^{+ \infty } \frac{x^n}{q^n - 1}$
JO - Journal de théorie des nombres de Bordeaux
PY - 1996
PB - Université Bordeaux I
VL - 8
IS - 1
SP - 173
EP - 181
LA - fre
KW - linear independence over a field; irrationality; imaginary quadratic number field; Padé approximation
UR - http://eudml.org/doc/247825
ER -

References

top
  1. [1] K. Alladi and M.L. Robinson, Legendre Polynomials and Irrationality, J. Reine Angew. Math.318 (1980), 137-155. Zbl0425.10039MR579389
  2. [2] J.M. Arnaudiès, L'irréductibilité des polynômes cyclotomiques, R.M.S. (Octobre 1991). 
  3. [3] P.T. Bateman, Note on the coefficients of the cyclotomic polynomial, Bull. Amer. Math. Soc.35 (1945), 1180-1181. Zbl0035.31102MR32677
  4. [4] J.P. Bézivin, Plus petit commun multiple des termes consécutifs d'une suite récurrente linéaire, Collect. Math.40, 1 (1989), 1-11. Zbl0708.11015MR1078087
  5. [5] P. Borwein, On the irrationality of Σ(1/(qn + r)), J. Number Theory37 (1991), 253-259. Zbl0718.11029
  6. [6] P. Borwein, On the irrationality of certain series, Math. Proc. Camb. Phil. Soc.112 (1992), 141-146. Zbl0779.11027MR1162938
  7. [7] P. Bundschuh, Ein Satz über ganze Funktionen und Irrationatätsaussagen, Inventiones Math.9 (1970), 175-184. Zbl0188.10801MR258758
  8. [8] P. Bundschuh and K. Väänänen, Arithmetical Investigations of a certain infinite product, Compositio Math.91 (1994), 175-201. Zbl0802.11027MR1273648
  9. [9] D. Duverney, Approximants de Padé et U-dérivation, Bull. Soc. Math. France122 (1994), 553-570. Zbl0810.05009MR1305669
  10. [10] P. Erdôs, On arithmetical properties of Lambert Series, J. Indian Math. Soc. (N.S.) 12 (1948), 63-66. Zbl0032.01701MR29405
  11. [11] G.H. Hardy and E.M. Wright, An introduction to the Theory of Numbers, Oxford Science Publications, Fifth Edition (1979). Zbl0423.10001MR568909
  12. [12] M. Mignotte, An Inequality about Irreducible Factors of Integer Polynomials, J. Number Theory30 (1988), 156-166. Zbl0648.12002MR961913

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.