On the distribution of complex-valued multiplicative functions

Antanas Laurinčikas

Journal de théorie des nombres de Bordeaux (1996)

  • Volume: 8, Issue: 1, page 183-203
  • ISSN: 1246-7405

Abstract

top
Let g j ( m ) , j = 1 , 2 , be complex-valued multiplicative functions. In the paper the necessary and sufficient conditions are indicated for the convergence in some sense of probability measure 1 n card 0 m n : ( g 1 ( m ) , g 2 ( m ) ) A , A ( 2 ) , as n .

How to cite

top

Laurinčikas, Antanas. "On the distribution of complex-valued multiplicative functions." Journal de théorie des nombres de Bordeaux 8.1 (1996): 183-203. <http://eudml.org/doc/247831>.

@article{Laurinčikas1996,
abstract = {Let $g_j(m), j = 1, 2$, be complex-valued multiplicative functions. In the paper the necessary and sufficient conditions are indicated for the convergence in some sense of probability measure\begin\{equation*\}\frac\{1\}\{n\} \text\{ card\} \left\lbrace 0 \le m \le n : (g\_1(m), g\_2(m)) \in A\right\rbrace , A \in \mathcal \{B\}(\mathbb \{C\}^2), \end\{equation*\}as $n \rightarrow \infty $.},
author = {Laurinčikas, Antanas},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {multiplicative functions; joint limiting distribution},
language = {eng},
number = {1},
pages = {183-203},
publisher = {Université Bordeaux I},
title = {On the distribution of complex-valued multiplicative functions},
url = {http://eudml.org/doc/247831},
volume = {8},
year = {1996},
}

TY - JOUR
AU - Laurinčikas, Antanas
TI - On the distribution of complex-valued multiplicative functions
JO - Journal de théorie des nombres de Bordeaux
PY - 1996
PB - Université Bordeaux I
VL - 8
IS - 1
SP - 183
EP - 203
AB - Let $g_j(m), j = 1, 2$, be complex-valued multiplicative functions. In the paper the necessary and sufficient conditions are indicated for the convergence in some sense of probability measure\begin{equation*}\frac{1}{n} \text{ card} \left\lbrace 0 \le m \le n : (g_1(m), g_2(m)) \in A\right\rbrace , A \in \mathcal {B}(\mathbb {C}^2), \end{equation*}as $n \rightarrow \infty $.
LA - eng
KW - multiplicative functions; joint limiting distribution
UR - http://eudml.org/doc/247831
ER -

References

top
  1. [1] H. Delange, Sur la distribution des valeurs des functions multiplicatives complexes, C. R. Acad. Sc. Paris, 276, Série A (1973), pp. 161-164. Zbl0245.10043MR369302
  2. [2] J. Kubilius, Probabilistic Methods in the Theory of Numbers, Amer. Math. Soc. Translations of Math. Monographs, No 11, Providence, 1964. Zbl0133.30203MR160745
  3. [3] M.I. Tuliaganova, Multidimensional distributions for additive functions with the unit normalization, Izv.AN Uz. SSR, ser. phys.-mat., No 2 (1974), pp. 29-35 (in Russian). 
  4. [4] A. Laurincikas, Multidimensional distribution of values of multiplicative functions, Liet. matem. rink., 15, No 2 (1975), pp. 13-24 (in Russian). Zbl0324.60016MR384737
  5. [5] R. Sliesoraitiens, Application of the Cramér-Wold method for multidimensional distributions of additive arithmetical functions, Liet. matem. rink., 16, No 2 (1976), pp. 155-172 (in Russian). MR432580
  6. [6] A. Laurinčikas, On joint distribution of values of arithmetical functions, Liet. matem. rink., 31, No 3 (1991), pp. 433-454 (in Russian). Zbl0732.11037MR1162237
  7. [7] A. Laurinčikas, On probability measures on the multidemensional complex plane, Liet. matem. rink., 34, No 3 (1994), pp. 331-346 (in Russian). Zbl0831.60006MR1355242
  8. [8] H. Delange, Sur les fonctions arithmétiques multiplicatives, Ann. Sci. École Norm. Sup. (3), 78 (1961), pp. 273-304. Zbl0234.10043MR169829
  9. [9] G. Halász, Über die Mittelwerte multiplikativer zahlentheoretisher Funktionen, Acta Math. Acad. Sci. Hung., 19 (1968), pp. 365-403. Zbl0165.05804MR230694
  10. [10] H. Delange, On the distribution modulo I of additive functions, J. Indian Math. Soc., 34 (1970), pp. 215-235. Zbl0234.10044MR491576
  11. [11] P.D.T.A. Elliott, Probabilistic Number Theory I, Springer-Verlag, 1979. Zbl0431.10029MR551361
  12. [12] J. Kubilius, Probabilistic methods in the theory of arithmetical functions, Akt. probl. analit. teorii tchisel, Minsk, 1974, pp. 81-118 (in Russian). Zbl0333.10034
  13. [13] N M. Timofeev, B. V. Levin, Analytic method in probabilistic number theory, Utch. zap. Vladim. gos. ped.inst. mat., 57 (2) (1971), pp. 57-150 (in Russian). MR302596
  14. [14] H. Delange, A remark on multiplicative functions, Bull. London Math. Soc., 2 (1970), pp. 183-185. Zbl0212.39602MR262191
  15. [15] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Publications de l'Institut Élie Cartan, Université de Nancy I, 1990. Zbl0788.11001
  16. [16] B.V. Levin, N.M. Timofeev, S.T. Tuliaganov, Distribution of values of multiplicative functions, Liet. matem. rink., 13, No 1 (1973), pp. 87-100 (in Russian). Zbl0257.10024MR314790

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.