Primitive divisors of Lucas and Lehmer sequences, II

Paul M. Voutier

Journal de théorie des nombres de Bordeaux (1996)

  • Volume: 8, Issue: 2, page 251-274
  • ISSN: 1246-7405

Abstract

top
Let α and β are conjugate complex algebraic integers which generate Lucas or Lehmer sequences. We present an algorithm to search for elements of such sequences which have no primitive divisors. We use this algorithm to prove that for all α and β with h ( β / α ) 4 , the n -th element of these sequences has a primitive divisor for n > 30 . In the course of proving this result, we give an improvement of a result of Stewart concerning more general sequences.

How to cite

top

Voutier, Paul M.. "Primitive divisors of Lucas and Lehmer sequences, II." Journal de théorie des nombres de Bordeaux 8.2 (1996): 251-274. <http://eudml.org/doc/247835>.

@article{Voutier1996,
abstract = {Let $\alpha $ and $\beta $ are conjugate complex algebraic integers which generate Lucas or Lehmer sequences. We present an algorithm to search for elements of such sequences which have no primitive divisors. We use this algorithm to prove that for all $\alpha $ and $\beta $ with h$( \beta / \alpha ) \le 4$, the $n$-th element of these sequences has a primitive divisor for $n &gt; 30$. In the course of proving this result, we give an improvement of a result of Stewart concerning more general sequences.},
author = {Voutier, Paul M.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Lucas sequence; Lehmer sequence; primitive divisor; lower bound; linear forms in logarithms},
language = {eng},
number = {2},
pages = {251-274},
publisher = {Université Bordeaux I},
title = {Primitive divisors of Lucas and Lehmer sequences, II},
url = {http://eudml.org/doc/247835},
volume = {8},
year = {1996},
}

TY - JOUR
AU - Voutier, Paul M.
TI - Primitive divisors of Lucas and Lehmer sequences, II
JO - Journal de théorie des nombres de Bordeaux
PY - 1996
PB - Université Bordeaux I
VL - 8
IS - 2
SP - 251
EP - 274
AB - Let $\alpha $ and $\beta $ are conjugate complex algebraic integers which generate Lucas or Lehmer sequences. We present an algorithm to search for elements of such sequences which have no primitive divisors. We use this algorithm to prove that for all $\alpha $ and $\beta $ with h$( \beta / \alpha ) \le 4$, the $n$-th element of these sequences has a primitive divisor for $n &gt; 30$. In the course of proving this result, we give an improvement of a result of Stewart concerning more general sequences.
LA - eng
KW - Lucas sequence; Lehmer sequence; primitive divisor; lower bound; linear forms in logarithms
UR - http://eudml.org/doc/247835
ER -

References

top
  1. [1] P.T. Bateman, C. Pomerance and R.C. Vaughan,, On the size of the coefficients of the cyclotomic polynomial, Topics in Classical Number Theory,, (Budapest, 1981), Colloquia Mathematica Societatis Janos Bolyai, 34, North-Holland, New York, 1984. Zbl0547.10010MR781138
  2. [2] G.D. Birkhoff and H.S. Vandiver, On the integral divisors of an - bn, Ann. of Math. (2) 5 (1904), 173-180. Zbl35.0205.01MR1503541JFM35.0205.01
  3. [3] L. Carlitz, On the coefficients of the cyclotomic polynomials, Amer. Math. Monthly75 (1968), 372-377. Zbl0157.08901MR227086
  4. [4] R.D. Carmichael, On the numerical factors of the arithmetic forms an ±βn, Ann. of Math. (2) 15 (1913), 30-70. JFM44.0216.01
  5. [5] L. K. DurstExceptional real Lehmer sequences, Pacific J. Math.9 (1959), 437-441. Zbl0091.04204MR108465
  6. [6] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, 5th edition, 1978. Zbl0423.10001MR67125
  7. [7] G. Karpilovsky, Field Theory: Classical Foundations and Multiplicative Groups, Marcel Dekker, New York, 1988. Zbl0677.12010MR972982
  8. [8] M. Laurent, M. Mignotte and Y. Nesterenko, Formes Linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory, to appear. Zbl0843.11036
  9. [9] D.H. Lehmer, The distribution of totatives, Canadian J. Math.7 (1955), 347-357. Zbl0064.27902MR69199
  10. [10] P. Philippon and M. Waldschmidt, Lower bounds for linear forms in logarithms, New Advances in Transcendence Theory (A. Baker, ed.), Cambridge University Press, Cambridge, 1988. Zbl0659.10037MR972007
  11. [11] G. Robin, Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction w(n) nombre de diviseurs premiers de n, Acta Arith.XLII (1983), 367-389. Zbl0475.10034
  12. [12] J.B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math.6 (1962), 64-94. Zbl0122.05001MR137689
  13. [13] A. Schinzel, Primitive divisors of the expression An - Bn in algebraic number fields, J. Reine Angew. Math.268/269 (1974), 27-33. Zbl0287.12014MR344221
  14. [14] C.L. Stewart, Primitive divisors of Lucas and Lehmer sequences, Transcendence Theory: Advances and Applications (A. Baker and D.W. Masser, eds.), Academic Press, New York, 1977. MR476628
  15. [15] C.L. Stewart, On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers, Proc. London Math. Soc. (3) 35 (1977), 425-447. Zbl0389.10014MR491445
  16. [16] P.M. Voutier, Primitive divisors of Lucas and Lehmer sequences, Math. Comp.64 (1995), 869-888. Zbl0832.11009MR1284673
  17. [17] P.M. Voutier, An effective lower bound for the height of algebraic numbers, Acta Arith., (to appear). Zbl0838.11065MR1367580
  18. [18] M. Waldschmidt, Linear Independence of Logarithms of Algebraic Numbers, IMSc Report No 116 (1992), The Institute of Mathematical Sciences, Madras. Zbl0809.11038
  19. [19] M. Ward, The intrinsic divisors of Lehmer numbers, Ann. of Math. (2) 62 (1955), 230-236. Zbl0065.27102MR71446
  20. [20] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math.3 (1892), 265-284. MR1546236JFM24.0176.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.