Boundedness of oriented walks generated by substitutions
Journal de théorie des nombres de Bordeaux (1996)
- Volume: 8, Issue: 2, page 377-386
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topDekking, F. M., and Wen, Z.-Y.. "Boundedness of oriented walks generated by substitutions." Journal de théorie des nombres de Bordeaux 8.2 (1996): 377-386. <http://eudml.org/doc/247843>.
@article{Dekking1996,
abstract = {Let $x = x_0x_1 \dots $ be a fixed point of a substitution on the alphabet $\left\lbrace a,b \right\rbrace ,$ and let $U_a = \left( \begin\{array\}\{rr\}-1 & -1\\
0 & 1 \end\{array\} \right)$ and $U_b = \left( \begin\{array\}\{rr\} 1 & 1\\ 0 & 1 \end\{array\} \right)$. We give a complete classification of the substitutions $\sigma : \left\lbrace a, b \right\rbrace ^\{\star \}$ according to whether the sequence of matrices $\left( U_\{x_0\} U_\{x_1\} \dots U_\{x_n\} \right)^\infty _\{n=0\}$ is bounded or unbounded. This corresponds to the boundedness or unboundedness of the oriented walks generated by the substitutions.},
author = {Dekking, F. M., Wen, Z.-Y.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {substitutions; self-similarity; walks; automata sequences; boundedness; oriented one-dimensional walks; transition matrices},
language = {eng},
number = {2},
pages = {377-386},
publisher = {Université Bordeaux I},
title = {Boundedness of oriented walks generated by substitutions},
url = {http://eudml.org/doc/247843},
volume = {8},
year = {1996},
}
TY - JOUR
AU - Dekking, F. M.
AU - Wen, Z.-Y.
TI - Boundedness of oriented walks generated by substitutions
JO - Journal de théorie des nombres de Bordeaux
PY - 1996
PB - Université Bordeaux I
VL - 8
IS - 2
SP - 377
EP - 386
AB - Let $x = x_0x_1 \dots $ be a fixed point of a substitution on the alphabet $\left\lbrace a,b \right\rbrace ,$ and let $U_a = \left( \begin{array}{rr}-1 & -1\\
0 & 1 \end{array} \right)$ and $U_b = \left( \begin{array}{rr} 1 & 1\\ 0 & 1 \end{array} \right)$. We give a complete classification of the substitutions $\sigma : \left\lbrace a, b \right\rbrace ^{\star }$ according to whether the sequence of matrices $\left( U_{x_0} U_{x_1} \dots U_{x_n} \right)^\infty _{n=0}$ is bounded or unbounded. This corresponds to the boundedness or unboundedness of the oriented walks generated by the substitutions.
LA - eng
KW - substitutions; self-similarity; walks; automata sequences; boundedness; oriented one-dimensional walks; transition matrices
UR - http://eudml.org/doc/247843
ER -
References
top- [1] F.M. Dekking, Recurrent sets, Advances in Math.44 (1982), 78-104. Zbl0495.51017MR654549
- [2] F.M. Dekking, On transience and recurrence of generalized random walks, Z. Wahrsch. verw. Geb.61 (1982), 459-465. Zbl0479.60070MR682573
- [3] F.M. Dekking, Marches automatiques, J. Théor. Nombres Bordeaux5 (1993), 93-100. Zbl0795.11011MR1251229
- [4] F.M. Dekking, Iteration of maps by an automaton, Discrete Math.126 (1994), 81-86. Zbl0795.68158MR1264477
- [5] J.-M. Dumont et A. Thomas, Systèmes de numération et fonctions fractales relatifs aux substitutions, Theor. Comp. Science65 (1989), 153-169. Zbl0679.10010MR1020484
- [6] J.-M. Dumont, Summation formulae for substitutions on a finite alphabet, Number Theory and Physics (Eds: J.-M. Luck, P. Moussa, M. Waldschmidt). Springer Lect. Notes Physics47 (1990), 185-194. Zbl0718.11009MR1058462
- [7] M. Mendès France and J. Shallit, Wirebending and continued fractions, J. Combinatorial Theory Ser. A50 (1989), 1-23. Zbl0663.10056MR978063
- [8] D. Levine and P.J. Steinhardt, Quasicrystals (I). Definition and structure. Physical ReviewB, vol. (2) 34, 1986, 596-615. MR831879
- [9] P.A.B. Pleasants, Quasicrystallography: some interesting new patterns. Banach center publications, vol. 17, 1985, 439-461. Zbl0655.05023MR840489
- [10] Z.-X. Wem and Z.-Y. Wen, Marches sur les arbres homogènes suivant une suite substitutive, J. Théor. Nombres Bordeaux, 4 (1992), 155-186. Zbl0755.11007MR1183924
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.