Nowhere dense subsets and Booth's Lemma
Commentationes Mathematicae Universitatis Carolinae (1996)
- Volume: 37, Issue: 2, page 391-395
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMalykhin, Viacheslav I.. "Nowhere dense subsets and Booth's Lemma." Commentationes Mathematicae Universitatis Carolinae 37.2 (1996): 391-395. <http://eudml.org/doc/247866>.
@article{Malykhin1996,
abstract = {The following statement is proved to be independent from $[\operatorname\{LB\}+\lnot \operatorname\{CH\}]$: $(*)$ Let $X$ be a Tychonoff space with $c(X)\le \aleph _0$ and $\pi w(X)<\mathfrak \{C\}$. Then a union of less than $\mathfrak \{C\}$ of nowhere dense subsets of $X$ is a union of not greater than $\pi w(X)$ of nowhere dense subsets.},
author = {Malykhin, Viacheslav I.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {nowhere dense subset; Booth’s Lemma; $\pi $-weight; nowhere dense subset; Booth's lemma; -weight},
language = {eng},
number = {2},
pages = {391-395},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Nowhere dense subsets and Booth's Lemma},
url = {http://eudml.org/doc/247866},
volume = {37},
year = {1996},
}
TY - JOUR
AU - Malykhin, Viacheslav I.
TI - Nowhere dense subsets and Booth's Lemma
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 2
SP - 391
EP - 395
AB - The following statement is proved to be independent from $[\operatorname{LB}+\lnot \operatorname{CH}]$: $(*)$ Let $X$ be a Tychonoff space with $c(X)\le \aleph _0$ and $\pi w(X)<\mathfrak {C}$. Then a union of less than $\mathfrak {C}$ of nowhere dense subsets of $X$ is a union of not greater than $\pi w(X)$ of nowhere dense subsets.
LA - eng
KW - nowhere dense subset; Booth’s Lemma; $\pi $-weight; nowhere dense subset; Booth's lemma; -weight
UR - http://eudml.org/doc/247866
ER -
References
top- Rudin M.E., Martin's Axiom, in Handbook of set-theoretic topology K. Kunen and J.E. Vaughan Elsevier Science Publishers B.V. (1984), 491-501. (1984)
- Bell M.G., On the combinatorial Principle , Fund. Math. 114 (1981), 149-157. (1981) Zbl0581.03038MR0643555
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.