Some remarks on a class of weight functions

Loredana Caso; Maria Transirico

Commentationes Mathematicae Universitatis Carolinae (1996)

  • Volume: 37, Issue: 3, page 469-477
  • ISSN: 0010-2628

Abstract

top
In this paper we obtain some results about a class of functions ρ : Ω R + , where Ω is an open set of R n , which are related to the distance function from a fixed subset S ρ Ω . We deduce some imbedding theorems in weighted Sobolev spaces, where the weight function is a power of a function ρ .

How to cite

top

Caso, Loredana, and Transirico, Maria. "Some remarks on a class of weight functions." Commentationes Mathematicae Universitatis Carolinae 37.3 (1996): 469-477. <http://eudml.org/doc/247870>.

@article{Caso1996,
abstract = {In this paper we obtain some results about a class of functions $\rho \,:\, \Omega \rightarrow R_+$, where $\Omega $ is an open set of $R^n$, which are related to the distance function from a fixed subset $S_\rho \subset \partial \Omega $. We deduce some imbedding theorems in weighted Sobolev spaces, where the weight function is a power of a function $\rho $.},
author = {Caso, Loredana, Transirico, Maria},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {weight functions; weighted Sobolev spaces; distance function; imbedding theorems; weighted Sobolev spaces},
language = {eng},
number = {3},
pages = {469-477},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some remarks on a class of weight functions},
url = {http://eudml.org/doc/247870},
volume = {37},
year = {1996},
}

TY - JOUR
AU - Caso, Loredana
AU - Transirico, Maria
TI - Some remarks on a class of weight functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 3
SP - 469
EP - 477
AB - In this paper we obtain some results about a class of functions $\rho \,:\, \Omega \rightarrow R_+$, where $\Omega $ is an open set of $R^n$, which are related to the distance function from a fixed subset $S_\rho \subset \partial \Omega $. We deduce some imbedding theorems in weighted Sobolev spaces, where the weight function is a power of a function $\rho $.
LA - eng
KW - weight functions; weighted Sobolev spaces; distance function; imbedding theorems; weighted Sobolev spaces
UR - http://eudml.org/doc/247870
ER -

References

top
  1. Canale A., Caso L., Di Gironimo P., Weighted norm inequalities on irregular domains, Rend. Accad. Naz. Sci. XL Mem. Mat. (11) 16 (1992), 193-209. (1992) Zbl0834.46023MR1205751
  2. Canale A., Caso L., Di Gironimo P., Variational second order elliptic equations with singular coefficients, Rend. Accad. Naz. Sci. XL Mem. Mat. (1) 17 (1993), 113-128. (1993) Zbl0831.35042MR1268627
  3. Di Gironimo P., Transirico M., Second order elliptic equations in weighted Sobolev spaces on unbounded domains, Rend. Accad. Naz. Sci. XL Mem. Mat. (10) 15 (1991), 163-176. (1991) Zbl0835.35038MR1151577
  4. Fortunato D., Spazi di Sobolev con peso ed applicazioni ai problemi ellittici, Rend. Accad. Sc. Fis. Mat. di Napoli (4) 41 (1974), 245-289. (1974) MR0463904
  5. Fortunato D., Una limitazione a priori in spazi di Sobolev con peso per i problemi ellittici nel semispazio, Ric. di Mat. 25 (1976), 137-161. (1976) Zbl0332.35012MR0430521
  6. Glushak A.V., Transirico M., Troisi M., Teoremi di immersione ed equazioni ellittiche in aperti non limitati, Rend. Mat. - s. VII, (4) 9 (1989), 113-130. (1989) MR1044521
  7. Infantino R., Matarasso S., Troisi M., Proprietá spettrali per una classe di operatori ellittici, Ann. Mat. Pura Appl. (4) 121 (1979), 109-129. (1979) Zbl0416.35053MR0554769
  8. Infantino R., Troisi M., Operatori ellittici degeneri in domini di R n , Boll. Un. Mat. Ital. (5) 17-B (1980), 186-203. (1980) MR0572595
  9. Kufner A., Weighted Sobolev Spaces, Teubner Texte zur Math., Band 31, 1980. Zbl0862.46017MR0664599
  10. Kufner A., John O., Fučík S., Function Spaces, Nordhoff International Publishing, Leyden, 1977. MR0482102
  11. Matarasso S., Troisi M., Operatori differenziali ellittici in spazi di Sobolev con peso, Ric. di Mat. 27 (1978), 83-108. (1978) Zbl0389.35020MR0524685
  12. Matarasso S., Troisi M., Teoremi di compattezza in domini non limitati, Boll. Un. Mat. Ital. (5) 18-B (1981), 517-537. (1981) Zbl0503.46021MR0629421
  13. Schianchi R., Spazi di Sobolev dissimmetrici e con peso, Rend. Accad. Sc. Fis. Mat. di Napoli (4) 42 (1975), 349-388. (1975) MR0458160
  14. Schianchi R., Problemi quasi ellittici nel semispazio, Rend. Circ. Mat. di Palermo (2) 29 (1980), 103-138. (1980) Zbl0456.35039
  15. Sgambati L., Limitazioni a priori per le equazioni lineari ellittiche del second'ordine in due variabili in domini non limitati, Ric. di Mat. 32 (1983), 25-39. (1983) 
  16. Sgambati L., Troisi M., Limitazioni a priori per una classe di problemi ellittici in domini non limitati, Note di Mat. 1 (1981), 225-259. (1981) Zbl0555.35035MR0695151
  17. Transirico M., Troisi M., Limitazioni a priori per una classe di operatori differenziali lineari ellittici del secondo ordine in aperti non limitati, Boll. Un. Mat. Ital. (7) 5-B (1991), 757-771. (1991) MR1146771
  18. Troisi M., Teoremi di inclusione negli spazi di Sobolev con peso, Ric. di Mat. 18 (1969), 49-74. (1969) Zbl0182.16803MR0412802
  19. Troisi M., Problemi ellittici con dati singolari, Ann. Mat. Pura Appl. (4) 83 (1969), 363-408. (1969) Zbl0194.41902MR0257561
  20. Troisi M., Problemi al contorno con condizioni omogenee per le equazioni quasi-ellittiche, Ann. Mat. Pura Appl. (4) 90 (1971), 331-412. (1971) Zbl0243.35040MR0412593
  21. Troisi M., Su una classe di funzioni peso, Rend. Accad. Naz. Sci. XL Mem. Mat. (11) 10 (1986), 141-152. (1986) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.