On a theorem of Fermi
Commentationes Mathematicae Universitatis Carolinae (1996)
- Volume: 37, Issue: 4, page 867-872
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topSlavskii, Viktor V.. "On a theorem of Fermi." Commentationes Mathematicae Universitatis Carolinae 37.4 (1996): 867-872. <http://eudml.org/doc/247877>.
@article{Slavskii1996,
abstract = {Conformally flat metric $\bar\{g\}$ is said to be Ricci superosculating with $g$ at the point $x_0$ if $g_\{ij\}(x_0)=\bar\{g\}_\{ij\}(x_0)$, $\Gamma _\{ij\}^k(x_0)=\bar\{\Gamma \}_\{ij\}^k(x_0)$, $R_\{ij\}^k(x_0)=\bar\{R\}_\{ij\}^k(x_0)$, where $R_\{ij\}$ is the Ricci tensor. In this paper the following theorem is proved: If $\,\gamma $ is a smooth curve of the Riemannian manifold $M$(without self-crossing(, then there is a neighbourhood of $\,\gamma $ and a conformally flat metric $\bar\{g\}$ which is the Ricci superosculating with $g$ along the curve $\gamma $.},
author = {Slavskii, Viktor V.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {conformal connection; development; conformal connection; development},
language = {eng},
number = {4},
pages = {867-872},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On a theorem of Fermi},
url = {http://eudml.org/doc/247877},
volume = {37},
year = {1996},
}
TY - JOUR
AU - Slavskii, Viktor V.
TI - On a theorem of Fermi
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 4
SP - 867
EP - 872
AB - Conformally flat metric $\bar{g}$ is said to be Ricci superosculating with $g$ at the point $x_0$ if $g_{ij}(x_0)=\bar{g}_{ij}(x_0)$, $\Gamma _{ij}^k(x_0)=\bar{\Gamma }_{ij}^k(x_0)$, $R_{ij}^k(x_0)=\bar{R}_{ij}^k(x_0)$, where $R_{ij}$ is the Ricci tensor. In this paper the following theorem is proved: If $\,\gamma $ is a smooth curve of the Riemannian manifold $M$(without self-crossing(, then there is a neighbourhood of $\,\gamma $ and a conformally flat metric $\bar{g}$ which is the Ricci superosculating with $g$ along the curve $\gamma $.
LA - eng
KW - conformal connection; development; conformal connection; development
UR - http://eudml.org/doc/247877
ER -
References
top- Cartan E., Leçons sur la Géometrie des Espaces de Riemann, Gauthier-Villars, Paris (1928), 242. (1928) MR0020842
- Cartan E., Les espaces à connection conforme, Ann. Soc. Po. Math. (1923), 2 171-221. (1923)
- Slavskii V.V., Conformal development of the curve on the Riemannian manifold in the Minkowski space, Siberian Math. Journal 37 3 (1996), 676-699. (1996) MR1434711
- Akivis M.A., Konnov V.V., Sense local aspects of the theory of conformal structure, Russian Math. Surveys (1993), 48 3-40. (1993) MR1227946
- Slavskii V.V., Conformally flat metrics and the geometry of the pseudo-Euclidean space, Siberian Math. Jour. (1994), 35 3 674-682. (1994) MR1292228
- Besse A.L., Einstein Manifolds, Erg. Math. Grenzgeb. 10, Berlin-Heidelberg-New York (1987). (1987) Zbl0613.53001MR0867684
- Reshetnyak Yu.G., On the lifting of the non-regular path in the bundle manifold and its applications, Siberian Math. Jour. (1975), 16 3 588-598. (1975)
- Gray A., Vonhecke L., The volumes of tubes about curves in a Riemannian manifold, Proc. London Math. Soc. (1982), 44 2 215-243. (1982) MR0647431
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.