Random coincidence degree theory with applications to random differential inclusions
Enayet U, Tarafdar; P. Watson; George Xian-Zhi Yuan
Commentationes Mathematicae Universitatis Carolinae (1996)
- Volume: 37, Issue: 4, page 725-748
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topTarafdar, Enayet U,, Watson, P., and Yuan, George Xian-Zhi. "Random coincidence degree theory with applications to random differential inclusions." Commentationes Mathematicae Universitatis Carolinae 37.4 (1996): 725-748. <http://eudml.org/doc/247880>.
@article{Tarafdar1996,
abstract = {The aim of this paper is to establish a random coincidence degree theory. This degree theory possesses all the usual properties of the deterministic degree theory such as existence of solutions, excision and Borsuk’s odd mapping theorem. Our degree theory provides a method for proving the existence of random solutions of the equation $Lx\in N(\omega ,x)$ where $L:\text\{\it dom\}\hspace\{1.3pt\}L\subset X\rightarrow Z$ is a linear Fredholm mapping of index zero and $N:\Omega \times \overline\{G\}\rightarrow 2^Z$ is a noncompact Carathéodory mapping. Applications to random differential inclusions are also considered.},
author = {Tarafdar, Enayet U,, Watson, P., Yuan, George Xian-Zhi},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Carathéodory upper semicontinuous; random (stochastic) topological degree; Souslin family; measurable space; Carathéodory u.s.c. maps; random degree; Souslin family; measurable spaces},
language = {eng},
number = {4},
pages = {725-748},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Random coincidence degree theory with applications to random differential inclusions},
url = {http://eudml.org/doc/247880},
volume = {37},
year = {1996},
}
TY - JOUR
AU - Tarafdar, Enayet U,
AU - Watson, P.
AU - Yuan, George Xian-Zhi
TI - Random coincidence degree theory with applications to random differential inclusions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 4
SP - 725
EP - 748
AB - The aim of this paper is to establish a random coincidence degree theory. This degree theory possesses all the usual properties of the deterministic degree theory such as existence of solutions, excision and Borsuk’s odd mapping theorem. Our degree theory provides a method for proving the existence of random solutions of the equation $Lx\in N(\omega ,x)$ where $L:\text{\it dom}\hspace{1.3pt}L\subset X\rightarrow Z$ is a linear Fredholm mapping of index zero and $N:\Omega \times \overline{G}\rightarrow 2^Z$ is a noncompact Carathéodory mapping. Applications to random differential inclusions are also considered.
LA - eng
KW - Carathéodory upper semicontinuous; random (stochastic) topological degree; Souslin family; measurable space; Carathéodory u.s.c. maps; random degree; Souslin family; measurable spaces
UR - http://eudml.org/doc/247880
ER -
References
top- Akashi W.Y., Equivalence theorems and coincidence degree for multivalued mappings, Osaka J. Math. 25.1 (1988), 33-47. (1988) MR0937185
- Berge C., Espaces Topologiques, Dunod, Paris (1959). (1959) Zbl0088.14703MR0105663
- Engelking R., General Topology, Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin (1989). (1989) Zbl0684.54001MR1039321
- Engl H., Random fixed point theorems for multivalued mappings, Pacific J. Math. 76 (1978), 351-360. (1978) Zbl0355.47035MR0500323
- Fan K., Fixed points and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121-126. (1952) MR0047317
- Friedman A., Partial Differential Equations, Holt, Rinehart, Winston, New York (1969). (1969) Zbl0224.35002MR0445088
- Gaines R.E., Mawhin J.L., Coincidence degree and nonlinear differential equations, Springer-Verlag Lecture Notes No. 568 (1977). (1977) Zbl0339.47031MR0637067
- Gaines R.E., Peterson J.K., Periodic solutions to differential inclusions, Nonlinear Analysis 5 (1981), 1109-1131. (1981) Zbl0475.34023MR0636724
- Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag New York (1983). (1983) Zbl0562.35001MR0737190
- Glicksberg I., A further generalization of the Kakutani fixed point theorem with applications to Nash equilibrium points, Proc. Amer. Math. Soc. 3 (1952), 170-174. (1952) MR0046638
- Himmelberg C.J., Measurable relations, Fund. Math. 87 (1975), 53-72. (1975) Zbl0296.28003MR0367142
- Lasota A., Opial Z., An application of the Kakutani-Ky Fan Theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. 13 (1965), 781-786. (1965) Zbl0151.10703MR0196178
- Lloyd N.G., Degree Theory, Cambridge University Press (1978). (1978) Zbl0367.47001MR0493564
- Ma T.W., Topological degree for set valued compact vector fields in locally convex spaces, Dissertationes Math. 92 (1972), 1-43. (1972)
- Mawhin J., Equivalence theorems for nonlinear operator-equations and coincidence degree theory for some mappings in locally convex topological vector spaces, J. Differential Equations 12 (1972), 610-636. (1972) Zbl0244.47049MR0328703
- Nowak A., Applications of random fixed point theorems in the theory of generalized random differential equations, Bull. Pol. Acad. Sci. 34 (1986), 487-494. (1986) Zbl0617.60059MR0874895
- Nussbaum R.D., The fixed point index and fixed point theorems for -set contractions, Doctoral Dissertation, University of Chicago, Chicago, Ill., 1969.
- Nussbaum R.D., The fixed point index for condensing maps, Ann. Mat. Pura. Appl. 89 (1971), 217-258. (1971) MR0312341
- Petryshyn W.V., Fitzpatrick P.M., A degree theory, fixed point theorems and mapping theorems for multivalued noncompact mappings, Trans. Amer. Math. Soc. 194 (1974), 1-25. (1974) Zbl0297.47049MR2478129
- Pruszko T., A Coincidence degree for -compact convex-valued mappings and its applications to the Picard problem for orientor fields, Bull. Acad. Pol. Sci. 27 (1979), 895-902. (1979) MR0616183
- T. Pruszko, Topological degree methods in multivalued boundary value problems, Nonlinear Analysis 5 (1981), 959-973. (1981) MR0633011
- Robertson A.P., On measurable selections, Proc. R.S.E. (A) 72 (1972/73), 1-7. (1972/73) MR0399398
- Rogers C.A., Hausdorff Measures, Cambridge University Press (1970). (1970) Zbl0204.37601MR0281862
- Sadowski B.W., Limit-compact and condensing operators, Russian Math. Surveys 27 (1972), 85-155. (1972) MR0428132
- Saint-Beuve M.F., On the existence of von Neumann-Aumann's theorem, J. Functional Analysis 17 (1974), 112-129. (1974) MR0374364
- Saks S., Theory of the Integral, Dover, New York (1968). (1968) MR0167578
- Tan K.K., Yuan X.Z., On deterministic and random fixed points, Proc. Amer. Math. Soc. 119 849-856 (1993). (1993) Zbl0801.47044MR1169051
- Tarafdar E., Teo S.K., On the existence of solutions of the equation and a coincidence degree theory, J. Austral. Math. Soc. Ser. A. 28 (1979), 139-173. (1979) Zbl0431.47038MR0550958
- Tarafdar E., Thompson H.B., On the solvability of nonlinear noncompact operator equations, J. Austral. Math. Soc. Ser. A 43 (1987), 103-126. (1987) Zbl0623.47072MR0886808
- Tarafdar E., Watson P., Yuan X.Z., Jointly measurable selections of condensing random upper semi-continuous set-valued mappings and its applications to random fixed points, Nonlinear Analysis, T.M.A. (in press), 1996.
- Wagner D.H., Survey of measurable selection theorems, SIAM J. Control. Optim. 15 859-903 (1977). (1977) Zbl0407.28006MR0486391
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.