Random coincidence degree theory with applications to random differential inclusions

Enayet U, Tarafdar; P. Watson; George Xian-Zhi Yuan

Commentationes Mathematicae Universitatis Carolinae (1996)

  • Volume: 37, Issue: 4, page 725-748
  • ISSN: 0010-2628

Abstract

top
The aim of this paper is to establish a random coincidence degree theory. This degree theory possesses all the usual properties of the deterministic degree theory such as existence of solutions, excision and Borsuk’s odd mapping theorem. Our degree theory provides a method for proving the existence of random solutions of the equation L x N ( ω , x ) where L : dom L X Z is a linear Fredholm mapping of index zero and N : Ω × G ¯ 2 Z is a noncompact Carathéodory mapping. Applications to random differential inclusions are also considered.

How to cite

top

Tarafdar, Enayet U,, Watson, P., and Yuan, George Xian-Zhi. "Random coincidence degree theory with applications to random differential inclusions." Commentationes Mathematicae Universitatis Carolinae 37.4 (1996): 725-748. <http://eudml.org/doc/247880>.

@article{Tarafdar1996,
abstract = {The aim of this paper is to establish a random coincidence degree theory. This degree theory possesses all the usual properties of the deterministic degree theory such as existence of solutions, excision and Borsuk’s odd mapping theorem. Our degree theory provides a method for proving the existence of random solutions of the equation $Lx\in N(\omega ,x)$ where $L:\text\{\it dom\}\hspace\{1.3pt\}L\subset X\rightarrow Z$ is a linear Fredholm mapping of index zero and $N:\Omega \times \overline\{G\}\rightarrow 2^Z$ is a noncompact Carathéodory mapping. Applications to random differential inclusions are also considered.},
author = {Tarafdar, Enayet U,, Watson, P., Yuan, George Xian-Zhi},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Carathéodory upper semicontinuous; random (stochastic) topological degree; Souslin family; measurable space; Carathéodory u.s.c. maps; random degree; Souslin family; measurable spaces},
language = {eng},
number = {4},
pages = {725-748},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Random coincidence degree theory with applications to random differential inclusions},
url = {http://eudml.org/doc/247880},
volume = {37},
year = {1996},
}

TY - JOUR
AU - Tarafdar, Enayet U,
AU - Watson, P.
AU - Yuan, George Xian-Zhi
TI - Random coincidence degree theory with applications to random differential inclusions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 4
SP - 725
EP - 748
AB - The aim of this paper is to establish a random coincidence degree theory. This degree theory possesses all the usual properties of the deterministic degree theory such as existence of solutions, excision and Borsuk’s odd mapping theorem. Our degree theory provides a method for proving the existence of random solutions of the equation $Lx\in N(\omega ,x)$ where $L:\text{\it dom}\hspace{1.3pt}L\subset X\rightarrow Z$ is a linear Fredholm mapping of index zero and $N:\Omega \times \overline{G}\rightarrow 2^Z$ is a noncompact Carathéodory mapping. Applications to random differential inclusions are also considered.
LA - eng
KW - Carathéodory upper semicontinuous; random (stochastic) topological degree; Souslin family; measurable space; Carathéodory u.s.c. maps; random degree; Souslin family; measurable spaces
UR - http://eudml.org/doc/247880
ER -

References

top
  1. Akashi W.Y., Equivalence theorems and coincidence degree for multivalued mappings, Osaka J. Math. 25.1 (1988), 33-47. (1988) MR0937185
  2. Berge C., Espaces Topologiques, Dunod, Paris (1959). (1959) Zbl0088.14703MR0105663
  3. Engelking R., General Topology, Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin (1989). (1989) Zbl0684.54001MR1039321
  4. Engl H., Random fixed point theorems for multivalued mappings, Pacific J. Math. 76 (1978), 351-360. (1978) Zbl0355.47035MR0500323
  5. Fan K., Fixed points and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121-126. (1952) MR0047317
  6. Friedman A., Partial Differential Equations, Holt, Rinehart, Winston, New York (1969). (1969) Zbl0224.35002MR0445088
  7. Gaines R.E., Mawhin J.L., Coincidence degree and nonlinear differential equations, Springer-Verlag Lecture Notes No. 568 (1977). (1977) Zbl0339.47031MR0637067
  8. Gaines R.E., Peterson J.K., Periodic solutions to differential inclusions, Nonlinear Analysis 5 (1981), 1109-1131. (1981) Zbl0475.34023MR0636724
  9. Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag New York (1983). (1983) Zbl0562.35001MR0737190
  10. Glicksberg I., A further generalization of the Kakutani fixed point theorem with applications to Nash equilibrium points, Proc. Amer. Math. Soc. 3 (1952), 170-174. (1952) MR0046638
  11. Himmelberg C.J., Measurable relations, Fund. Math. 87 (1975), 53-72. (1975) Zbl0296.28003MR0367142
  12. Lasota A., Opial Z., An application of the Kakutani-Ky Fan Theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. 13 (1965), 781-786. (1965) Zbl0151.10703MR0196178
  13. Lloyd N.G., Degree Theory, Cambridge University Press (1978). (1978) Zbl0367.47001MR0493564
  14. Ma T.W., Topological degree for set valued compact vector fields in locally convex spaces, Dissertationes Math. 92 (1972), 1-43. (1972) 
  15. Mawhin J., Equivalence theorems for nonlinear operator-equations and coincidence degree theory for some mappings in locally convex topological vector spaces, J. Differential Equations 12 (1972), 610-636. (1972) Zbl0244.47049MR0328703
  16. Nowak A., Applications of random fixed point theorems in the theory of generalized random differential equations, Bull. Pol. Acad. Sci. 34 (1986), 487-494. (1986) Zbl0617.60059MR0874895
  17. Nussbaum R.D., The fixed point index and fixed point theorems for k -set contractions, Doctoral Dissertation, University of Chicago, Chicago, Ill., 1969. 
  18. Nussbaum R.D., The fixed point index for condensing maps, Ann. Mat. Pura. Appl. 89 (1971), 217-258. (1971) MR0312341
  19. Petryshyn W.V., Fitzpatrick P.M., A degree theory, fixed point theorems and mapping theorems for multivalued noncompact mappings, Trans. Amer. Math. Soc. 194 (1974), 1-25. (1974) Zbl0297.47049MR2478129
  20. Pruszko T., A Coincidence degree for L -compact convex-valued mappings and its applications to the Picard problem for orientor fields, Bull. Acad. Pol. Sci. 27 (1979), 895-902. (1979) MR0616183
  21. T. Pruszko, Topological degree methods in multivalued boundary value problems, Nonlinear Analysis 5 (1981), 959-973. (1981) MR0633011
  22. Robertson A.P., On measurable selections, Proc. R.S.E. (A) 72 (1972/73), 1-7. (1972/73) MR0399398
  23. Rogers C.A., Hausdorff Measures, Cambridge University Press (1970). (1970) Zbl0204.37601MR0281862
  24. Sadowski B.W., Limit-compact and condensing operators, Russian Math. Surveys 27 (1972), 85-155. (1972) MR0428132
  25. Saint-Beuve M.F., On the existence of von Neumann-Aumann's theorem, J. Functional Analysis 17 (1974), 112-129. (1974) MR0374364
  26. Saks S., Theory of the Integral, Dover, New York (1968). (1968) MR0167578
  27. Tan K.K., Yuan X.Z., On deterministic and random fixed points, Proc. Amer. Math. Soc. 119 849-856 (1993). (1993) Zbl0801.47044MR1169051
  28. Tarafdar E., Teo S.K., On the existence of solutions of the equation L x N x and a coincidence degree theory, J. Austral. Math. Soc. Ser. A. 28 (1979), 139-173. (1979) Zbl0431.47038MR0550958
  29. Tarafdar E., Thompson H.B., On the solvability of nonlinear noncompact operator equations, J. Austral. Math. Soc. Ser. A 43 (1987), 103-126. (1987) Zbl0623.47072MR0886808
  30. Tarafdar E., Watson P., Yuan X.Z., Jointly measurable selections of condensing random upper semi-continuous set-valued mappings and its applications to random fixed points, Nonlinear Analysis, T.M.A. (in press), 1996. 
  31. Wagner D.H., Survey of measurable selection theorems, SIAM J. Control. Optim. 15 859-903 (1977). (1977) Zbl0407.28006MR0486391

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.