A remark on accessible and axiomatizable categories

Jiří Adámek; Jiří Rosický

Commentationes Mathematicae Universitatis Carolinae (1996)

  • Volume: 37, Issue: 2, page 411-414
  • ISSN: 0010-2628

Abstract

top
For categories with equalizers the concepts ``accessible'' and ``axiomatizable'' are equivalent. This results is proved under (in fact, is equivalent to) the large-cardinal Vopěnka's principle.

How to cite

top

Adámek, Jiří, and Rosický, Jiří. "A remark on accessible and axiomatizable categories." Commentationes Mathematicae Universitatis Carolinae 37.2 (1996): 411-414. <http://eudml.org/doc/247887>.

@article{Adámek1996,
abstract = {For categories with equalizers the concepts ``accessible'' and ``axiomatizable'' are equivalent. This results is proved under (in fact, is equivalent to) the large-cardinal Vopěnka's principle.},
author = {Adámek, Jiří, Rosický, Jiří},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {accessible category; infinitary logic; Vopěnka's principle; accessible category; bounded category; axiomatizable category; regular cardinal; many-sorted infinitary first order theory; Vopěnka’s principle},
language = {eng},
number = {2},
pages = {411-414},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A remark on accessible and axiomatizable categories},
url = {http://eudml.org/doc/247887},
volume = {37},
year = {1996},
}

TY - JOUR
AU - Adámek, Jiří
AU - Rosický, Jiří
TI - A remark on accessible and axiomatizable categories
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 2
SP - 411
EP - 414
AB - For categories with equalizers the concepts ``accessible'' and ``axiomatizable'' are equivalent. This results is proved under (in fact, is equivalent to) the large-cardinal Vopěnka's principle.
LA - eng
KW - accessible category; infinitary logic; Vopěnka's principle; accessible category; bounded category; axiomatizable category; regular cardinal; many-sorted infinitary first order theory; Vopěnka’s principle
UR - http://eudml.org/doc/247887
ER -

References

top
  1. Adámek J., Rosický J., Locally Presentable and Accessible Categories, Cambridge Univ. Press, 1994. MR1294136
  2. Diers Y., Catégories localement multiprésentables, Arch. Math. 34 (1980), 344-356. (1980) Zbl0453.18002MR0593951
  3. Fisher E.R., Vopěnka's principle, category theory and universal algebra, personal communication, 1987. 
  4. Jech T., Set Theory, Academic Press, 1978. Zbl1007.03002MR0506523
  5. Lair C., Catégories modélables et catégories esquissables, Diagrammes 6 (1981), 1-20. (1981) Zbl0522.18008MR0684535
  6. Makkai M., Paré R., Accessible categories: the foundations of categorical model theory, Contemp. Math. 104 (1989). (1989) MR1031717
  7. Rosický J., Trnková V., Adámek J., Unexpected properties of locally presentable categories, Alg. Univ. 27 (1990), 153-170. (1990) MR1037859

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.