Asymptotic behaviour of the time dependent Norton-Hoff law in plasticity theory and H 1 regularity

Alain Bensoussan; Jens Frehse

Commentationes Mathematicae Universitatis Carolinae (1996)

  • Volume: 37, Issue: 2, page 285-304
  • ISSN: 0010-2628

Abstract

top
We prove H loc 1 -regularity for the stresses in the Prandtl-Reuss-law. The proof runs via uniform estimates for the Norton-Hoff-approximation.

How to cite

top

Bensoussan, Alain, and Frehse, Jens. "Asymptotic behaviour of the time dependent Norton-Hoff law in plasticity theory and $H^{1}$ regularity." Commentationes Mathematicae Universitatis Carolinae 37.2 (1996): 285-304. <http://eudml.org/doc/247888>.

@article{Bensoussan1996,
abstract = {We prove $H^\{1\}_\{\operatorname\{loc\}\}$-regularity for the stresses in the Prandtl-Reuss-law. The proof runs via uniform estimates for the Norton-Hoff-approximation.},
author = {Bensoussan, Alain, Frehse, Jens},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {elasto-plasticity; regularity; variational inequalities; Norton-Hoff model; Prandtl-Reuss model},
language = {eng},
number = {2},
pages = {285-304},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Asymptotic behaviour of the time dependent Norton-Hoff law in plasticity theory and $H^\{1\}$ regularity},
url = {http://eudml.org/doc/247888},
volume = {37},
year = {1996},
}

TY - JOUR
AU - Bensoussan, Alain
AU - Frehse, Jens
TI - Asymptotic behaviour of the time dependent Norton-Hoff law in plasticity theory and $H^{1}$ regularity
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 2
SP - 285
EP - 304
AB - We prove $H^{1}_{\operatorname{loc}}$-regularity for the stresses in the Prandtl-Reuss-law. The proof runs via uniform estimates for the Norton-Hoff-approximation.
LA - eng
KW - elasto-plasticity; regularity; variational inequalities; Norton-Hoff model; Prandtl-Reuss model
UR - http://eudml.org/doc/247888
ER -

References

top
  1. Bensoussan A., Frehse J., Asymptotic Behaviour of Norton-Hoff’s Law in Plasticity theory and H 1 Regularity, Collection: Boundary Value Problems for Partial Differential Equations and Applications, RMA Res. Notes Appl. Math. (Vol. in honor of E. Magenes) Masson Paris 3-25 29 (1993). (1993) MR1260435
  2. Duvaut G., Lions J.L., Inequalities in Mechanics and Physics, Springer-Verlag Berlin (1976). (1976) Zbl0331.35002MR0521262
  3. Lions J.L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars Paris (1969). (1969) Zbl0189.40603MR0259693
  4. Seregin G.A., Differentiabilty properties of the stress tensor in perfect elastic-plastic theory, Differentsial'nye Uravneniya 23 (1987), 1981-1991 English translation in Differential Equations 23 (1987), 1349-1358. (1987) 
  5. Seregin G.A., Differentiability of solutions of certain variational inequalities describing the quasi-static equilibrium of an elastic-plastic body, Pomi, Preprints E-1-92 Steklov Mathematical Institute Sankt Petersburg, 1992. 
  6. Seregin G.A., Differentiability properties of the stress-tensor in perfect elastic-plastic theory, Preprint UTM321-Settembre Universita degli Studi di Trento, 1990. 
  7. Le Tallec P., Numerical Analysis of Viscoelastic problems, Masson Paris (1990). (1990) Zbl0718.73091MR1071383
  8. Temam R., Mathematical Problems in Plasticity, Gauthier Villars Paris (1985). (1985) MR0711964
  9. Temam R., A Generalized Norton-Hoff-Model and the Prandtl-Reuss-Law of Plasticity, Arch. Rat. Mech. Anal. 95 (1986), 137-181. (1986) Zbl0615.73035MR0850094

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.