Asymptotic behaviour of the time dependent Norton-Hoff law in plasticity theory and regularity
Commentationes Mathematicae Universitatis Carolinae (1996)
- Volume: 37, Issue: 2, page 285-304
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBensoussan, Alain, and Frehse, Jens. "Asymptotic behaviour of the time dependent Norton-Hoff law in plasticity theory and $H^{1}$ regularity." Commentationes Mathematicae Universitatis Carolinae 37.2 (1996): 285-304. <http://eudml.org/doc/247888>.
@article{Bensoussan1996,
abstract = {We prove $H^\{1\}_\{\operatorname\{loc\}\}$-regularity for the stresses in the Prandtl-Reuss-law. The proof runs via uniform estimates for the Norton-Hoff-approximation.},
author = {Bensoussan, Alain, Frehse, Jens},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {elasto-plasticity; regularity; variational inequalities; Norton-Hoff model; Prandtl-Reuss model},
language = {eng},
number = {2},
pages = {285-304},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Asymptotic behaviour of the time dependent Norton-Hoff law in plasticity theory and $H^\{1\}$ regularity},
url = {http://eudml.org/doc/247888},
volume = {37},
year = {1996},
}
TY - JOUR
AU - Bensoussan, Alain
AU - Frehse, Jens
TI - Asymptotic behaviour of the time dependent Norton-Hoff law in plasticity theory and $H^{1}$ regularity
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 2
SP - 285
EP - 304
AB - We prove $H^{1}_{\operatorname{loc}}$-regularity for the stresses in the Prandtl-Reuss-law. The proof runs via uniform estimates for the Norton-Hoff-approximation.
LA - eng
KW - elasto-plasticity; regularity; variational inequalities; Norton-Hoff model; Prandtl-Reuss model
UR - http://eudml.org/doc/247888
ER -
References
top- Bensoussan A., Frehse J., Asymptotic Behaviour of Norton-Hoff’s Law in Plasticity theory and Regularity, Collection: Boundary Value Problems for Partial Differential Equations and Applications, RMA Res. Notes Appl. Math. (Vol. in honor of E. Magenes) Masson Paris 3-25 29 (1993). (1993) MR1260435
- Duvaut G., Lions J.L., Inequalities in Mechanics and Physics, Springer-Verlag Berlin (1976). (1976) Zbl0331.35002MR0521262
- Lions J.L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars Paris (1969). (1969) Zbl0189.40603MR0259693
- Seregin G.A., Differentiabilty properties of the stress tensor in perfect elastic-plastic theory, Differentsial'nye Uravneniya 23 (1987), 1981-1991 English translation in Differential Equations 23 (1987), 1349-1358. (1987)
- Seregin G.A., Differentiability of solutions of certain variational inequalities describing the quasi-static equilibrium of an elastic-plastic body, Pomi, Preprints E-1-92 Steklov Mathematical Institute Sankt Petersburg, 1992.
- Seregin G.A., Differentiability properties of the stress-tensor in perfect elastic-plastic theory, Preprint UTM321-Settembre Universita degli Studi di Trento, 1990.
- Le Tallec P., Numerical Analysis of Viscoelastic problems, Masson Paris (1990). (1990) Zbl0718.73091MR1071383
- Temam R., Mathematical Problems in Plasticity, Gauthier Villars Paris (1985). (1985) MR0711964
- Temam R., A Generalized Norton-Hoff-Model and the Prandtl-Reuss-Law of Plasticity, Arch. Rat. Mech. Anal. 95 (1986), 137-181. (1986) Zbl0615.73035MR0850094
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.