On l o c 2 , n -regularity for the gradient of a weak solution to nonlinear elliptic systems

Josef Daněček

Commentationes Mathematicae Universitatis Carolinae (1996)

  • Volume: 37, Issue: 3, page 523-536
  • ISSN: 0010-2628

Abstract

top
Interior l o c 2 , n -regularity for the gradient of a weak solution to nonlinear second order elliptic systems is investigated.

How to cite

top

Daněček, Josef. "On $\mathcal {L}_{loc}^{2,n}$-regularity for the gradient of a weak solution to nonlinear elliptic systems." Commentationes Mathematicae Universitatis Carolinae 37.3 (1996): 523-536. <http://eudml.org/doc/247894>.

@article{Daněček1996,
abstract = {Interior $\mathcal \{L\}_\{loc\}^\{2,n\}$-regularity for the gradient of a weak solution to nonlinear second order elliptic systems is investigated.},
author = {Daněček, Josef},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {nonlinear elliptic system; regularity; Campanato-Morrey spaces; nonlinear elliptic system; regularity; Campanato-Morrey spaces},
language = {eng},
number = {3},
pages = {523-536},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On $\mathcal \{L\}_\{loc\}^\{2,n\}$-regularity for the gradient of a weak solution to nonlinear elliptic systems},
url = {http://eudml.org/doc/247894},
volume = {37},
year = {1996},
}

TY - JOUR
AU - Daněček, Josef
TI - On $\mathcal {L}_{loc}^{2,n}$-regularity for the gradient of a weak solution to nonlinear elliptic systems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 3
SP - 523
EP - 536
AB - Interior $\mathcal {L}_{loc}^{2,n}$-regularity for the gradient of a weak solution to nonlinear second order elliptic systems is investigated.
LA - eng
KW - nonlinear elliptic system; regularity; Campanato-Morrey spaces; nonlinear elliptic system; regularity; Campanato-Morrey spaces
UR - http://eudml.org/doc/247894
ER -

References

top
  1. Campanato S., Sistemi ellittici in forma divergenza. Regolarita all'interno, Quaderni Pisa (1980). (1980) Zbl0453.35026MR0668196
  2. Campanato S., Hölder continuity of the solutions of some non-linear elliptic systems, Adv. Math. 48 (1983), 16-43. (1983) MR0697613
  3. Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies N.105 Princeton University Press Princeton (1983). (1983) Zbl0516.49003MR0717034
  4. Grevholm B., On the structure of the spaces k p , λ , Math. Scand. 26 (1970), 189-196. (1970) MR0275146
  5. Kokilashvili V., Krbec M., Weighted Norm Inequalities in Lorentz and Orlicz Spaces, World Scientific London (1991). (1991) MR1156767
  6. Kufner A., John O., Fučík S., Function Spaces, Academia Prague (1977). (1977) MR0482102
  7. Morrey C.B., Jr., Multiple Integrals in the Calculus of Variations, Springer-Verlag Heidelberg (1966). (1966) Zbl0142.38701MR0202511
  8. Nečas J., Introduction to the Theory of Nonlinear Elliptic Equations, Teubner-Texte zur Mathematik Band 52 Leipzig (1983). (1983) MR0731261
  9. Ziemer W.P., Weakly Differentiable Functions, Springer-Verlag Heidelberg (1989). (1989) Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.