OCA and towers in
Commentationes Mathematicae Universitatis Carolinae (1996)
- Volume: 37, Issue: 4, page 861-866
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topFarah, Ilijas. "OCA and towers in $\mathcal {P}(\mathbb {N})/fin$." Commentationes Mathematicae Universitatis Carolinae 37.4 (1996): 861-866. <http://eudml.org/doc/247897>.
@article{Farah1996,
abstract = {We shall show that Open Coloring Axiom has different influence on the algebra $\mathcal \{P\}(\mathbb \{N\})/fin$ than on $\mathbb \{N\}^\mathbb \{N\}/fin$. The tool used to accomplish this is forcing with a Suslin tree.},
author = {Farah, Ilijas},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Open Coloring Axiom; dense sets of reals; towers; forcing; Suslin trees; open coloring axiom; dense sets of reals; towers; forcing; Suslin trees; Martin's axiom},
language = {eng},
number = {4},
pages = {861-866},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {OCA and towers in $\mathcal \{P\}(\mathbb \{N\})/fin$},
url = {http://eudml.org/doc/247897},
volume = {37},
year = {1996},
}
TY - JOUR
AU - Farah, Ilijas
TI - OCA and towers in $\mathcal {P}(\mathbb {N})/fin$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 4
SP - 861
EP - 866
AB - We shall show that Open Coloring Axiom has different influence on the algebra $\mathcal {P}(\mathbb {N})/fin$ than on $\mathbb {N}^\mathbb {N}/fin$. The tool used to accomplish this is forcing with a Suslin tree.
LA - eng
KW - Open Coloring Axiom; dense sets of reals; towers; forcing; Suslin trees; open coloring axiom; dense sets of reals; towers; forcing; Suslin trees; Martin's axiom
UR - http://eudml.org/doc/247897
ER -
References
top- Abraham U., Rubin M., Shelah S., On the consistency of some partition theorems for continuous colorings, and the structure of -dense real order types, Ann. of Pure and Appl. Logic 29 (1985), 123-206. (1985) MR0801036
- Baumgartner J., All -dense sets of reals can be isomorphic, Fundamenta Mathematicae 79 (1973), 100-106. (1973) Zbl0274.02037MR0317934
- Devlin K., Johnsbråten H., The Souslin Problem, Springer Lecture Notes in Mathematics, # 405 (1974). (1974) MR0384542
- Dordal P.L., Towers in and , Ann. of Pure and Appl. Logic 247-277 (1989), 45.3. (1989) MR1032832
- Fremlin D., Consequences of Martin's Axiom, Cambridge University Press (1984). (1984) Zbl0551.03033
- Gruenhage G., Cosmicity of cometrizable spaces, Trans. AMS 313 (1989), 301-315. (1989) Zbl0667.54012MR0992600
- Todorčević S., Partition Problems in Topology, AMS Providence, Rhode Island (1989). (1989) MR0980949
- Todorčević S., Oscillations of sets of integers, to appear. MR1601383
- Veličković B., OCA and automorphisms of , Topology Appl. 49 (1993), 1-13. (1993) MR1202874
- Weese M., personal communication, .
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.