The ambient homeomorphy of certain function and sequence spaces
Jan J. Dijkstra; Jerzy Mogilski
Commentationes Mathematicae Universitatis Carolinae (1996)
- Volume: 37, Issue: 3, page 595-611
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topDijkstra, Jan J., and Mogilski, Jerzy. "The ambient homeomorphy of certain function and sequence spaces." Commentationes Mathematicae Universitatis Carolinae 37.3 (1996): 595-611. <http://eudml.org/doc/247903>.
@article{Dijkstra1996,
abstract = {In this paper we consider a number of sequence and function spaces that are known to be homeomorphic to the countable product of the linear space $\sigma $. The spaces we are interested in have a canonical imbedding in both a topological Hilbert space and a Hilbert cube. It turns out that when we consider these spaces as subsets of a Hilbert cube then there is only one topological type. For imbeddings in the countable product of lines there are two types depending on whether the space is contained in a $\sigma $-compactum or not.},
author = {Dijkstra, Jan J., Mogilski, Jerzy},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Hilbert space; Hilbert cube; $\mathcal \{F\}_\{\sigma \delta \}$-absorber; ambient homeomorphism; function space; $p$-summable sequence; Hilbert space; Hilbert cube; -absorber; ambient homeomorphism; function space; -summable sequence},
language = {eng},
number = {3},
pages = {595-611},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The ambient homeomorphy of certain function and sequence spaces},
url = {http://eudml.org/doc/247903},
volume = {37},
year = {1996},
}
TY - JOUR
AU - Dijkstra, Jan J.
AU - Mogilski, Jerzy
TI - The ambient homeomorphy of certain function and sequence spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 3
SP - 595
EP - 611
AB - In this paper we consider a number of sequence and function spaces that are known to be homeomorphic to the countable product of the linear space $\sigma $. The spaces we are interested in have a canonical imbedding in both a topological Hilbert space and a Hilbert cube. It turns out that when we consider these spaces as subsets of a Hilbert cube then there is only one topological type. For imbeddings in the countable product of lines there are two types depending on whether the space is contained in a $\sigma $-compactum or not.
LA - eng
KW - Hilbert space; Hilbert cube; $\mathcal {F}_{\sigma \delta }$-absorber; ambient homeomorphism; function space; $p$-summable sequence; Hilbert space; Hilbert cube; -absorber; ambient homeomorphism; function space; -summable sequence
UR - http://eudml.org/doc/247903
ER -
References
top- Baars J., Gladdines H., van Mill J., Absorbing systems in infinite-dimensional manifolds, Topology Appl. 50 (1993), 147-182. (1993) Zbl0794.57005MR1217483
- Bessaga C., Pełczyński A., Selected Topics in Infinite-Dimensional Topology, PWN Warsaw (1975). (1975)
- Curtis D.W., Boundary sets in the Hilbert cube, Topology Appl. 20 (1985), 201-221. (1985) Zbl0575.57008MR0804034
- Dijkstra J.J., Dobrowolski T., Marciszewski W., van Mill J., Mogilski J., Recent classification and characterization results in geometric topology, Bull. Amer. Math. Soc. 22 (1990), 277-283. (1990) Zbl0713.57011MR1027899
- Dijkstra J.J., van Mill J., Mogilski J., The space of infinite-dimensional compacta and other topological copies of , Pacific. J. Math. 152 (1992), 255-273. (1992) MR1141795
- Dijkstra J.J., Mogilski J., The topological product structure of systems of Lebesgue spaces, Math. Ann. 290 (1991), 527-543. (1991) Zbl0734.46013MR1116236
- Dobrowolski T., Marciszewski W., Mogilski J., On topological classification of function spaces of low Borel complexity, Trans. Amer. Math. Soc. 328 (1991), 307-324. (1991) MR1065602
- Dobrowolski T., Mogilski J., Problems on topological classification of incomplete metric spaces, 409-429 in Open Problems in Topology, J. van Mill and G.M. Reed, eds., North-Holland, Amsterdam, 1990. MR1078661
- Dobrowolski T., Mogilski J., Certain sequence and function spaces homeomorphic to the countable product of , J. London Math. Soc. 45.2 (1992), 566-576. (1992) MR1180263
- Lutzer D., McCoy R., Category in function spaces I, Pacific J. Math. 90 (1980), 145-168. (1980) Zbl0481.54017MR0599327
- van Mill J., Topological equivalence of certain function spaces, Compositio Math. 63 (1987), 159-188. (1987) Zbl0634.54011MR0906368
- van Mill J., Infinite-Dimensional Topology, Prerequisites and Introduction, North-Holland Amsterdam (1989). (1989) Zbl0663.57001MR0977744
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.