On nodal radial solutions of an elliptic problem involving critical Sobolev exponent
Commentationes Mathematicae Universitatis Carolinae (1996)
- Volume: 37, Issue: 1, page 1-16
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topChabrowski, Jan H.. "On nodal radial solutions of an elliptic problem involving critical Sobolev exponent." Commentationes Mathematicae Universitatis Carolinae 37.1 (1996): 1-16. <http://eudml.org/doc/247913>.
@article{Chabrowski1996,
abstract = {In this paper we construct radial solutions of equation (1) (and (13)) having prescribed number of nodes.},
author = {Chabrowski, Jan H.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {elliptic equations; radial solutions; critical Sobolev exponent; mountain pass theorem; prescribed number of nodes; Nehari manifold; potential operator equations},
language = {eng},
number = {1},
pages = {1-16},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On nodal radial solutions of an elliptic problem involving critical Sobolev exponent},
url = {http://eudml.org/doc/247913},
volume = {37},
year = {1996},
}
TY - JOUR
AU - Chabrowski, Jan H.
TI - On nodal radial solutions of an elliptic problem involving critical Sobolev exponent
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 1
SP - 1
EP - 16
AB - In this paper we construct radial solutions of equation (1) (and (13)) having prescribed number of nodes.
LA - eng
KW - elliptic equations; radial solutions; critical Sobolev exponent; mountain pass theorem; prescribed number of nodes; Nehari manifold; potential operator equations
UR - http://eudml.org/doc/247913
ER -
References
top- Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the -Laplacian, Ann. Scuola Norm. Sup. Pisa 12.1 (1990), 393-413. (1990) Zbl0732.35028MR1079983
- Ambrosetti A., Rabinowitz P.H., Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381. (1973) Zbl0273.49063MR0370183
- Bartsch Th., Willem M., Infinitely many radial solutions of a semilinear elliptic problem on , Arch. Rat. Mech. Anal. 124 (1993), 261-274. (1993) MR1237913
- Bianchi G., Chabrowski J., Szulkin A., On symmetric solutions of an elliptic equation involving critical Sobolev exponent, Nonlinear Analysis, TMA 25(1) (1995), 41-59. (1995) MR1331987
- Ladyzhenskaya O.A., Ural'ceva O.A., Linear and Quasilinear Elliptic Equations, Academic Press New York (1968). (1968) MR0244627
- Lions P.L., Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal. 49 (1982), 315-334. (1982) Zbl0501.46032MR0683027
- Yi Li, Wei-Ming Ni, On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic equations in , I Asymptotic behavior, II Radial symmetry, Arch. Rat. Mech. Anal. 118 (1992), 195-222, 223-243. (1992) MR1158935
- Rother W., Some existence results for the equation , Commun. in P.D.E. 15.10 (1990), 1461-1473. (1990) MR1077474
- Stuart C.A., Bifurcation in for a semilinear elliptic equations, Proc. London Math. Soc. 57(3) (1988), 511-541. (1988) Zbl0673.35005MR0960098
- Talenti G., Best constants in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353-372. (1976) MR0463908
- Vainberg M.M., Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations, John Wiley & Sons New York-Toronto (1973). (1973) Zbl0279.47022MR0467428
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.