On a problem of Gulevich on nonexpansive maps in uniformly convex Banach spaces
Commentationes Mathematicae Universitatis Carolinae (1996)
- Volume: 37, Issue: 2, page 263-268
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topPark, Sehie. "On a problem of Gulevich on nonexpansive maps in uniformly convex Banach spaces." Commentationes Mathematicae Universitatis Carolinae 37.2 (1996): 263-268. <http://eudml.org/doc/247920>.
@article{Park1996,
abstract = {Let $X$ be a uniformly convex Banach space, $D\subset X$, $f:D\rightarrow X$ a nonexpansive map, and $K$ a closed bounded subset such that $\overline\{\text\{co\}\}\,K\subset D$. If (1) $f|_K$ is weakly inward and $K$ is star-shaped or (2) $f|_K$ satisfies the Leray-Schauder boundary condition, then $f$ has a fixed point in $\overline\{\text\{co\}\}\,K$. This is closely related to a problem of Gulevich [Gu]. Some of our main results are generalizations of theorems due to Kirk and Ray [KR] and others.},
author = {Park, Sehie},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {uniformly convex; Banach space; Hilbert space; contraction; nonexpansive map; weakly inward map; demi-closed; Rothe condition; Leray-Schauder condition; (KR)-bounded; Opial's condition; demi-closed; Rothe condition; uniformly convex Banach space; nonexpansive map; closed bounded subset; weakly inward; star-shaped; Leray-Schauder boundary condition; fixed point},
language = {eng},
number = {2},
pages = {263-268},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On a problem of Gulevich on nonexpansive maps in uniformly convex Banach spaces},
url = {http://eudml.org/doc/247920},
volume = {37},
year = {1996},
}
TY - JOUR
AU - Park, Sehie
TI - On a problem of Gulevich on nonexpansive maps in uniformly convex Banach spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 2
SP - 263
EP - 268
AB - Let $X$ be a uniformly convex Banach space, $D\subset X$, $f:D\rightarrow X$ a nonexpansive map, and $K$ a closed bounded subset such that $\overline{\text{co}}\,K\subset D$. If (1) $f|_K$ is weakly inward and $K$ is star-shaped or (2) $f|_K$ satisfies the Leray-Schauder boundary condition, then $f$ has a fixed point in $\overline{\text{co}}\,K$. This is closely related to a problem of Gulevich [Gu]. Some of our main results are generalizations of theorems due to Kirk and Ray [KR] and others.
LA - eng
KW - uniformly convex; Banach space; Hilbert space; contraction; nonexpansive map; weakly inward map; demi-closed; Rothe condition; Leray-Schauder condition; (KR)-bounded; Opial's condition; demi-closed; Rothe condition; uniformly convex Banach space; nonexpansive map; closed bounded subset; weakly inward; star-shaped; Leray-Schauder boundary condition; fixed point
UR - http://eudml.org/doc/247920
ER -
References
top- Altman M., A fixed point theorem for completely continuous operators in Banach spaces, Bull. Acad. Polon. Sci. 3 (1955), 409-413. (1955) Zbl0067.40802MR0076308
- Assad N.A., Kirk W.A., Fixed point theorems for set-valued mappings of contractive type, Pac. J. Math. 43 (1972), 553-562. (1972) MR0341459
- Browder F.E., Existence of periodic solutions for nonlinear equations of evolution, Proc. Nat. Acad. Sci. USA 53 (1965), 1100-1103. (1965) Zbl0135.17601MR0177295
- Browder F.E., Semicontractions and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. 74 (1968), 660-665. (1968) MR0230179
- Canetti A., Marino G., Pietramala P., Fixed point theorems for multivalued mappings in Banach spaces, Nonlinear Anal. TMA 17 (1991), 11-20. (1991) Zbl0765.47016MR1113446
- Dotson W.G., Fixed point theorems for non-expansive mappings on star-shaped subsets of Banach spaces, J. London Math. Soc. (2) 4 (1972), 408-410. (1972) Zbl0229.47047MR0296778
- Gatica J.A., Kirk W.A., Fixed point theorems for contraction mappings with applications to nonexpansive and pseudo-contractive mappings, Rocky Mount. J. Math. 4 (1974), 69-79. (1974) Zbl0277.47034MR0331136
- Goebel K., Kuczumow T., A contribution to the theory of nonexpansive mappings, Bull. Calcutta Math. Soc. 70 (1978), 355-357. (1978) Zbl0437.47040MR0584472
- Göhde D., Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251-258. (1965) MR0190718
- Gulevich N.M., Existence of fixed points of nonexpansive mappings satisfying the Rothe condition, J. Soviet Math. 26 (1984), 1607-1611. (1984) Zbl0538.47032
- Kirk W.A., Ray W.O., Fixed-point theorems for mappings defined on unbounded sets in Banach spaces, Studia Math. 64 (1979), 127-138. (1979) Zbl0412.47033MR0537116
- Knaster B., Kuratowski C., Mazurkiewicz S., Ein Beweis des Fixpunktsatzes für - dimensionale Simplexe, Fund. Math. 14 (1929), 132-137. (1929)
- Krasnosel'skii M.A., New existence theorems for solutions of nonlinear integral equations, Dokl. Akad. Nauk SSSR 88 (1953), 949-952. (1953) MR0055578
- Martinez-Yanez C., A remark on weakly inward contractions, Nonlinear Anal. TMA 16 (1991), 847-848. (1991) Zbl0735.47032MR1106372
- Opial Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. (1967) Zbl0179.19902MR0211301
- Petryshyn W.V., A new fixed point theorem and its application, Bull. Amer. Math. Soc. 78 (1972), 225-229. (1972) Zbl0231.47030MR0291920
- Ray W.O., Zeros of accretive operators defined on unbounded sets, Houston J. Math. 5 (1979), 133-139. (1979) Zbl0412.47032MR0533647
- Schaefer H.H., Neue Existenzsätze in der Theorie nichtlinearer Integralgleichungen, Ber. Verh. Sächs. Akad. Wiss. Leipzig Math.-Natur. Kl. 101 (1955), no.7, 40pp. (1955) Zbl0066.09001MR0094672
- Shinbrot M., A fixed point theorem and some applications, Arch. Rational Mech. Anal. 17 (1964), 255-271. (1964) Zbl0156.38502MR0169068
- Zhang S., Star-shaped sets and fixed points of multivalued mappings, Math. Japonica 36 (1991), 327-334. (1991) Zbl0752.47017MR1095748
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.