On positive operator-valued continuous maps

Ryszard Grzaślewicz

Commentationes Mathematicae Universitatis Carolinae (1996)

  • Volume: 37, Issue: 3, page 499-505
  • ISSN: 0010-2628

Abstract

top
In the paper the geometric properties of the positive cone and positive part of the unit ball of the space of operator-valued continuous space are discussed. In particular we show that ext-ray C + ( K , ( H ) ) = { + 1 { k 0 } 𝐱 𝐱 : 𝐱 𝐒 ( H ) , k 0 is an isolated point of K } ext 𝐁 + ( C ( K , ( H ) ) ) = s-ext 𝐁 + ( C ( K , ( H ) ) ) = { f C ( K , ( H ) : f ( K ) ext 𝐁 + ( ( H ) ) } . Moreover we describe exposed, strongly exposed and denting points.

How to cite

top

Grzaślewicz, Ryszard. "On positive operator-valued continuous maps." Commentationes Mathematicae Universitatis Carolinae 37.3 (1996): 499-505. <http://eudml.org/doc/247921>.

@article{Grzaślewicz1996,
abstract = {In the paper the geometric properties of the positive cone and positive part of the unit ball of the space of operator-valued continuous space are discussed. In particular we show that $\text\{ext-ray\} \text\{C\}_+(K,\mathcal \{L\}(H)) = \lbrace \mathbb \{R\}_+ \{\mathbf \{1\}\}_\{\lbrace k_0\rbrace \} \mathbf \{x\}\otimes \mathbf \{x\} : \mathbf \{x\}\in \mathbf \{S\}(H), k_0 \text\{ is an isolated point of \} K\rbrace $$\text\{ext\} \mathbf \{B\}_+(\text\{C\}(K,\mathcal \{L\}(H))) = \text\{s-ext \} \mathbf \{B\}_+(\text\{C\}(K,\mathcal \{L\}(H)))=\lbrace f\in \text\{C\}(K,\mathcal \{L\}(H) : f(K)\subset \text\{ext \} \mathbf \{B\}_+(\mathcal \{L\}(H))\rbrace $. Moreover we describe exposed, strongly exposed and denting points.},
author = {Grzaślewicz, Ryszard},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {exposed point; denting point; Hilbert space; positive operator; exposed point; denting point; Hilbert space; positive operator},
language = {eng},
number = {3},
pages = {499-505},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On positive operator-valued continuous maps},
url = {http://eudml.org/doc/247921},
volume = {37},
year = {1996},
}

TY - JOUR
AU - Grzaślewicz, Ryszard
TI - On positive operator-valued continuous maps
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 3
SP - 499
EP - 505
AB - In the paper the geometric properties of the positive cone and positive part of the unit ball of the space of operator-valued continuous space are discussed. In particular we show that $\text{ext-ray} \text{C}_+(K,\mathcal {L}(H)) = \lbrace \mathbb {R}_+ {\mathbf {1}}_{\lbrace k_0\rbrace } \mathbf {x}\otimes \mathbf {x} : \mathbf {x}\in \mathbf {S}(H), k_0 \text{ is an isolated point of } K\rbrace $$\text{ext} \mathbf {B}_+(\text{C}(K,\mathcal {L}(H))) = \text{s-ext } \mathbf {B}_+(\text{C}(K,\mathcal {L}(H)))=\lbrace f\in \text{C}(K,\mathcal {L}(H) : f(K)\subset \text{ext } \mathbf {B}_+(\mathcal {L}(H))\rbrace $. Moreover we describe exposed, strongly exposed and denting points.
LA - eng
KW - exposed point; denting point; Hilbert space; positive operator; exposed point; denting point; Hilbert space; positive operator
UR - http://eudml.org/doc/247921
ER -

References

top
  1. Argyros S., On compact space without strictly positive measures, Pacific J. Math. 105 (1983), 257-272. (1983) MR0691601
  2. Blumenthal R., Lindenstrauss J., Phelps R., Extreme operators into C ( K ) , Pacific J. Math. 15 (1968), 35-46. (1968) MR0209862
  3. Comfort W.W., Negrepontis S., Chain conditions in topology, Cambridge University Press, 1982. Zbl1156.54002MR0665100
  4. Clarkson J., Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414. (1936) Zbl0015.35604MR1501880
  5. Gaifman H., Concerning measures on Boolean algebras, Pacific J. Math. 14 (1964), 61-73. (1964) Zbl0127.02306MR0161952
  6. Grząślewicz R., Extreme operators on 2 -dimensional l p spaces, Colloquium Math. 44 (1981), 309-315. (1981) MR0652589
  7. Grząślewicz R., Extreme positive contractions on the Hilbert space, Portugaliae Math. 46 (1989), 341-349. (1989) MR1032505
  8. Grząślewicz R., Extreme operator valued continuous maps, Arkiv för Matematik 29 (1991), 73-81. (1991) MR1115076
  9. Grząślewicz R., On the geometry of ( H ) , submitted. 
  10. Grząślewicz R., Hadid S.B., Denting points in the space of operator valued continuous maps, Revista Mat. Univ. Comp. Madrid, to appear. MR1430779
  11. Herbert D.J., Lacey H.E., On supports of regular Borel measures, Pacific J. Math. 27 (1968), 101-118. (1968) MR0235088
  12. Kadison R.V., Isometries of operator algebras, Ann. Math. 54 (1954), 325-338. (1954) MR0043392
  13. Kelley J.L., Measures on Boolean algebras, Pacific J. Math. 9 (1959), 1165-1177. (1959) Zbl0087.04801MR0108570
  14. Bor-Luh Lin, Pei-Kee Lin, Troyanski S.L., Characterizations of denting points, Proc. Amer. Math. Soc. 102 (1988), 526-528. (1988) MR0928972
  15. Maharam D., An algebraic characterization of measure algebras, Math. Ann. 48 (1947), 154-167. (1947) Zbl0029.20401MR0018718
  16. Michael E., Continuous selections I, Ann. of Math. 63 (1956), 361-382. (1956) Zbl0071.15902MR0077107
  17. Moore L.C., Jr., Strictly increasing Riesz norms, Pacific J. Math. 37 (1971), 171-180. (1971) Zbl0237.46016MR0306866
  18. Papadopoulou S., On the geometry of stable compact convex sets, Math. Ann. 229 (1977), 193-200. (1977) Zbl0339.46001MR0450938
  19. Rosenthal H.P., On injective Banach spaces and the spaces L ( μ ) for finite measures μ , Acta Math. 124 (1970), 205-248. (1970) MR0257721

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.