On the value distribution of a class of arithmetic functions

Werner Georg Nowak

Commentationes Mathematicae Universitatis Carolinae (1996)

  • Volume: 37, Issue: 1, page 117-134
  • ISSN: 0010-2628

Abstract

top
This article deals with the value distribution of multiplicative prime-independent arithmetic functions ( α ( n ) ) with α ( n ) = 1 if n is N -free ( N 2 a fixed integer), α ( n ) > 1 else, and α ( 2 n ) . An asymptotic result is established with an error term probably definitive on the basis of the present knowledge about the zeros of the zeta-function. Applications to the enumerative functions of Abelian groups and of semisimple rings of given finite order are discussed.

How to cite

top

Nowak, Werner Georg. "On the value distribution of a class of arithmetic functions." Commentationes Mathematicae Universitatis Carolinae 37.1 (1996): 117-134. <http://eudml.org/doc/247924>.

@article{Nowak1996,
abstract = {This article deals with the value distribution of multiplicative prime-independent arithmetic functions $(\alpha (n))$ with $\alpha (n)=1$ if $n$ is $N$-free ($N\ge 2$ a fixed integer), $\alpha (n)>1$ else, and $\alpha (2^n)\rightarrow \infty $. An asymptotic result is established with an error term probably definitive on the basis of the present knowledge about the zeros of the zeta-function. Applications to the enumerative functions of Abelian groups and of semisimple rings of given finite order are discussed.},
author = {Nowak, Werner Georg},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {arithmetic functions; value distribution; finite Abelian groups; asymptotic formula; multiplicative prime-independent arithmetic function; value distribution},
language = {eng},
number = {1},
pages = {117-134},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the value distribution of a class of arithmetic functions},
url = {http://eudml.org/doc/247924},
volume = {37},
year = {1996},
}

TY - JOUR
AU - Nowak, Werner Georg
TI - On the value distribution of a class of arithmetic functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 1
SP - 117
EP - 134
AB - This article deals with the value distribution of multiplicative prime-independent arithmetic functions $(\alpha (n))$ with $\alpha (n)=1$ if $n$ is $N$-free ($N\ge 2$ a fixed integer), $\alpha (n)>1$ else, and $\alpha (2^n)\rightarrow \infty $. An asymptotic result is established with an error term probably definitive on the basis of the present knowledge about the zeros of the zeta-function. Applications to the enumerative functions of Abelian groups and of semisimple rings of given finite order are discussed.
LA - eng
KW - arithmetic functions; value distribution; finite Abelian groups; asymptotic formula; multiplicative prime-independent arithmetic function; value distribution
UR - http://eudml.org/doc/247924
ER -

References

top
  1. De Koninck J.M., Ivić A., Topics in arithmetical functions, North Holland Publ. Co., Amsterdam-New York-Oxford, 1980. MR0589545
  2. Ivić A., The distribution of values of the enumerating function of non-isomorphic Abelian groups of finite order, Arch. Math. 30 (1978), 374-379. (1978) MR0498444
  3. Ivić A., The Riemann zeta-function, New York-Chichester, J. Wiley & Sons, 1985. MR0792089
  4. Krätzel E., Die Werteverteilung der Anzahl der nicht-isomorphen abelschen Gruppen endlicher Ordnung und ein verwandtes zahlentheoretisches Problem, Publ. Inst. Math. Belgrade (45) 31 (1982), 93-101. (1982) MR0710948
  5. Krätzel E., Lattice Points, Kluwer Acad. Publ., Dordrecht-Boston-London, 1988. MR0998378
  6. Krätzel E., The distribution of values of a ( n ) , Arch. Math. 57 (1991), 47-52. (1991) Zbl0701.11039MR1111114
  7. Krätzel E., Wolke D., Über die Anzahl der abelschen Gruppen gegebener Ordnung, Analysis 14 (1994), 257-266. (1994) MR1302542
  8. Kühleitner M., Comparing the number of Abelian groups and of semisimple rings of a given order, Math. Slovaca, to appear. MR1390704
  9. Nowak W.G., Sums of reciprocals of general divisor functions and the Selberg divisor problem, Abh. Math. Sem. Hamburg 61 (1991), 163-173. (1991) Zbl0739.11037MR1138281
  10. Nowak W.G., On the average number of finite Abelian groups of a given order, Ann. sc. math. Québec 15 (1991), 193-202. (1991) Zbl0749.11043MR1151477
  11. Rieger G.J., Zum Teilerproblem von Atle Selberg, Math. Nachr. 30 (1965), 181-192. (1965) MR0190105
  12. Selberg A., Note on a paper by L.G. Sathe, J. Indian Math. Soc. 18 (1954), 83-87. (1954) Zbl0057.28502MR0067143
  13. Wolke D., Über die zahlentheoretische Funktion ø m e g a ( n ) , Acta Arith. 55 (1990), 323-331. (1990) Zbl0705.11051MR1069186
  14. Wolke D., On a problem of A. Rényi, Monatsh. Math. 111 (1991), 323-330. (1991) Zbl0742.11045MR1116950
  15. Wu J., Sur un probléme de Rényi, Monatsh. Math. 117 (1994), 303-322. (1994) Zbl0818.11037MR1279119

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.