On solvability of nonlinear operator equations and eigenvalues of homogeneous operators

Věra Burýšková; Slavomír Burýšek

Mathematica Bohemica (1996)

  • Volume: 121, Issue: 3, page 301-314
  • ISSN: 0862-7959

Abstract

top
Notions as the numerical range W ( S , T ) and the spectrum ( S , T ) of couple ( S , T ) of homogeneous operators on a Banach space are used to derive theorems on solvability of the equation S x - l T x = y . Conditions for the existence of eigenvalues of the couple ( S , T ) are given.

How to cite

top

Burýšková, Věra, and Burýšek, Slavomír. "On solvability of nonlinear operator equations and eigenvalues of homogeneous operators." Mathematica Bohemica 121.3 (1996): 301-314. <http://eudml.org/doc/247946>.

@article{Burýšková1996,
abstract = {Notions as the numerical range $W(S,T)$ and the spectrum $(S,T)$ of couple $(S,T)$ of homogeneous operators on a Banach space are used to derive theorems on solvability of the equation $Sx-lTx=y.$ Conditions for the existence of eigenvalues of the couple $(S,T)$ are given.},
author = {Burýšková, Věra, Burýšek, Slavomír},
journal = {Mathematica Bohemica},
keywords = {Banach and Hilbert space; homogeneous operator; polynomial operator; symmetric operator; monotone operator; numerical range; spectrum; eigenvalue; Banach and Hilbert space; homogeneous operator; polynomial operator; symmetric operator; monotone operator; numerical range; spectrum; eigenvalue},
language = {eng},
number = {3},
pages = {301-314},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On solvability of nonlinear operator equations and eigenvalues of homogeneous operators},
url = {http://eudml.org/doc/247946},
volume = {121},
year = {1996},
}

TY - JOUR
AU - Burýšková, Věra
AU - Burýšek, Slavomír
TI - On solvability of nonlinear operator equations and eigenvalues of homogeneous operators
JO - Mathematica Bohemica
PY - 1996
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 121
IS - 3
SP - 301
EP - 314
AB - Notions as the numerical range $W(S,T)$ and the spectrum $(S,T)$ of couple $(S,T)$ of homogeneous operators on a Banach space are used to derive theorems on solvability of the equation $Sx-lTx=y.$ Conditions for the existence of eigenvalues of the couple $(S,T)$ are given.
LA - eng
KW - Banach and Hilbert space; homogeneous operator; polynomial operator; symmetric operator; monotone operator; numerical range; spectrum; eigenvalue; Banach and Hilbert space; homogeneous operator; polynomial operator; symmetric operator; monotone operator; numerical range; spectrum; eigenvalue
UR - http://eudml.org/doc/247946
ER -

References

top
  1. F. Bonsall B. E. Cain H. Schneider, The numerical range of continuous mapping of a normed space, Aequationes Math. 2 (1968), 86-93. (1968) MR0232226
  2. F. E. Browder, Problemes non-lineaires, Univ. Montreal Press, 1966. (1966) Zbl0153.17302
  3. V. Burýšková, Definition und grudlegende Eigenschaften des nichtlinearen adjungierten Operators, Časopis Pěst. Mat. 103 (1978), 186-201. (1978) MR0477929
  4. V. Burýšková, Adjoint nonlinear opeгators, Dissertation, Praha, 1977. (In Czech.) (1977) 
  5. S. Burýšek, Some remarks on polynomial operators, Comment. Math. Univ. Carolin. 10,2 (1969), 285-306. (1969) MR0251560
  6. S. Burýšek, On spectra of nonlinear operators, Comment. Math. Univ. Carolin. 11,4 (1970), 727-743. (1970) MR0288639
  7. S. Burýšek V. Burýšková, Small solutions of a nonlineaг operator equation, Acta Polytech. Práce ČVUT Praze Ser. IV Tech. Teoret. 15 (1982), No. 1, 51-54. (1982) MR0910347
  8. S. Burýšek V. Burýšková, Some results from theory of homogeneous operators, CTU Seminar, 1994. (1994) 
  9. V. Burýšková S. Burýšek, On the convexity of the numeгical range of homogeneous operatoгs, Acta Polytech. Práce ČVUT Praze Ser. IV Tech. Teoret. 34 (1994), No. 2, 25-33. (1994) 
  10. V. Burýšková, Některé výsledky z teorie nelineárních operátorů a operátorových rovnic, Habilitation Thesis, Praha, 1994. (In Czech.) (1994) 
  11. S. Burýšek V. Burýšková, On the aproximative spectrum of the couple of homogeneous operators, Acta Polytech. Práce ČVUT Praze Ser. IV Tech. Teoret. 35 (1995), No. 1, 5-16. (1995) 
  12. G. Conti E. DePascale, The numerical range in the nonlineaг case, Boll. Un. Mat. Ital. B(5), 15 (1978), 210-216. (1978) MR0493572
  13. J. A. Canavati, 10.1016/0022-1236(79)90067-3, J. Funct. Anal. 33 (1979), 231-258. (1979) Zbl0445.47045MR0549114DOI10.1016/0022-1236(79)90067-3
  14. M. Furi A. Vignoli, Spectrum of nonlinear maps and bifuгcations in the nondifferentiable case, Ann. Math. Pura Appl. (4) 113 (1977), 265-285. (1977) MR0493558
  15. S. K. Kyong Y. Youngoh, On the numerical range for nonlinear operators, Bull. Korean Math. Soc. 21 (1984), No. 2, 119-126. (1984) MR0768468
  16. J. Prüss, 10.32917/hmj/1206134097, Hiroshima Math. J., 11 (1981), No. 2, 229-234. (1981) MR0620534DOI10.32917/hmj/1206134097
  17. A. Rhodius, 10.1002/mana.19760720115, Math. Nachr. 72 (1976), 169-180. (1976) MR0410501DOI10.1002/mana.19760720115
  18. A. E. Taylor, Úvod do funkcionální analýzy, Academia, Praha, 1973. (1973) 
  19. M. M. Vajnberg, Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations, Moskva, 1972. (In Russian.) (1972) 
  20. Verma U. Ram, Numerical range and related nonlinear functional equations, Czechoslovak Math. J. 42 (117) (1992), No. 3, 503-513. (1992) Zbl0781.47048MR1179314
  21. K. Yosida, Functional Analysis, Spгinger-Verlag, Berlin, 1965. (1965) Zbl0126.11504
  22. E. H. Zarantonello, 10.2140/pjm.1967.22.575, Pacific J. Math. 22 (1967), No. 3, 575-595. (1967) Zbl0152.34602MR0229079DOI10.2140/pjm.1967.22.575

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.