On solvability of nonlinear operator equations and eigenvalues of homogeneous operators
Věra Burýšková; Slavomír Burýšek
Mathematica Bohemica (1996)
- Volume: 121, Issue: 3, page 301-314
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBurýšková, Věra, and Burýšek, Slavomír. "On solvability of nonlinear operator equations and eigenvalues of homogeneous operators." Mathematica Bohemica 121.3 (1996): 301-314. <http://eudml.org/doc/247946>.
@article{Burýšková1996,
abstract = {Notions as the numerical range $W(S,T)$ and the spectrum $(S,T)$ of couple $(S,T)$ of homogeneous operators on a Banach space are used to derive theorems on solvability of the equation $Sx-lTx=y.$ Conditions for the existence of eigenvalues of the couple $(S,T)$ are given.},
author = {Burýšková, Věra, Burýšek, Slavomír},
journal = {Mathematica Bohemica},
keywords = {Banach and Hilbert space; homogeneous operator; polynomial operator; symmetric operator; monotone operator; numerical range; spectrum; eigenvalue; Banach and Hilbert space; homogeneous operator; polynomial operator; symmetric operator; monotone operator; numerical range; spectrum; eigenvalue},
language = {eng},
number = {3},
pages = {301-314},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On solvability of nonlinear operator equations and eigenvalues of homogeneous operators},
url = {http://eudml.org/doc/247946},
volume = {121},
year = {1996},
}
TY - JOUR
AU - Burýšková, Věra
AU - Burýšek, Slavomír
TI - On solvability of nonlinear operator equations and eigenvalues of homogeneous operators
JO - Mathematica Bohemica
PY - 1996
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 121
IS - 3
SP - 301
EP - 314
AB - Notions as the numerical range $W(S,T)$ and the spectrum $(S,T)$ of couple $(S,T)$ of homogeneous operators on a Banach space are used to derive theorems on solvability of the equation $Sx-lTx=y.$ Conditions for the existence of eigenvalues of the couple $(S,T)$ are given.
LA - eng
KW - Banach and Hilbert space; homogeneous operator; polynomial operator; symmetric operator; monotone operator; numerical range; spectrum; eigenvalue; Banach and Hilbert space; homogeneous operator; polynomial operator; symmetric operator; monotone operator; numerical range; spectrum; eigenvalue
UR - http://eudml.org/doc/247946
ER -
References
top- F. Bonsall B. E. Cain H. Schneider, The numerical range of continuous mapping of a normed space, Aequationes Math. 2 (1968), 86-93. (1968) MR0232226
- F. E. Browder, Problemes non-lineaires, Univ. Montreal Press, 1966. (1966) Zbl0153.17302
- V. Burýšková, Definition und grudlegende Eigenschaften des nichtlinearen adjungierten Operators, Časopis Pěst. Mat. 103 (1978), 186-201. (1978) MR0477929
- V. Burýšková, Adjoint nonlinear opeгators, Dissertation, Praha, 1977. (In Czech.) (1977)
- S. Burýšek, Some remarks on polynomial operators, Comment. Math. Univ. Carolin. 10,2 (1969), 285-306. (1969) MR0251560
- S. Burýšek, On spectra of nonlinear operators, Comment. Math. Univ. Carolin. 11,4 (1970), 727-743. (1970) MR0288639
- S. Burýšek V. Burýšková, Small solutions of a nonlineaг operator equation, Acta Polytech. Práce ČVUT Praze Ser. IV Tech. Teoret. 15 (1982), No. 1, 51-54. (1982) MR0910347
- S. Burýšek V. Burýšková, Some results from theory of homogeneous operators, CTU Seminar, 1994. (1994)
- V. Burýšková S. Burýšek, On the convexity of the numeгical range of homogeneous operatoгs, Acta Polytech. Práce ČVUT Praze Ser. IV Tech. Teoret. 34 (1994), No. 2, 25-33. (1994)
- V. Burýšková, Některé výsledky z teorie nelineárních operátorů a operátorových rovnic, Habilitation Thesis, Praha, 1994. (In Czech.) (1994)
- S. Burýšek V. Burýšková, On the aproximative spectrum of the couple of homogeneous operators, Acta Polytech. Práce ČVUT Praze Ser. IV Tech. Teoret. 35 (1995), No. 1, 5-16. (1995)
- G. Conti E. DePascale, The numerical range in the nonlineaг case, Boll. Un. Mat. Ital. B(5), 15 (1978), 210-216. (1978) MR0493572
- J. A. Canavati, 10.1016/0022-1236(79)90067-3, J. Funct. Anal. 33 (1979), 231-258. (1979) Zbl0445.47045MR0549114DOI10.1016/0022-1236(79)90067-3
- M. Furi A. Vignoli, Spectrum of nonlinear maps and bifuгcations in the nondifferentiable case, Ann. Math. Pura Appl. (4) 113 (1977), 265-285. (1977) MR0493558
- S. K. Kyong Y. Youngoh, On the numerical range for nonlinear operators, Bull. Korean Math. Soc. 21 (1984), No. 2, 119-126. (1984) MR0768468
- J. Prüss, 10.32917/hmj/1206134097, Hiroshima Math. J., 11 (1981), No. 2, 229-234. (1981) MR0620534DOI10.32917/hmj/1206134097
- A. Rhodius, 10.1002/mana.19760720115, Math. Nachr. 72 (1976), 169-180. (1976) MR0410501DOI10.1002/mana.19760720115
- A. E. Taylor, Úvod do funkcionální analýzy, Academia, Praha, 1973. (1973)
- M. M. Vajnberg, Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations, Moskva, 1972. (In Russian.) (1972)
- Verma U. Ram, Numerical range and related nonlinear functional equations, Czechoslovak Math. J. 42 (117) (1992), No. 3, 503-513. (1992) Zbl0781.47048MR1179314
- K. Yosida, Functional Analysis, Spгinger-Verlag, Berlin, 1965. (1965) Zbl0126.11504
- E. H. Zarantonello, 10.2140/pjm.1967.22.575, Pacific J. Math. 22 (1967), No. 3, 575-595. (1967) Zbl0152.34602MR0229079DOI10.2140/pjm.1967.22.575
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.