Pairwise fuzzy irresolute mappings

Samajh, Singh Thakur; R. Malviya

Mathematica Bohemica (1996)

  • Volume: 121, Issue: 3, page 273-280
  • ISSN: 0862-7959

Abstract

top
In this paper the concepts of fuzzy irresolute and fuzzy presemiopen mappings due to Yalvac [12] are generalized to fuzzy bitopological spaces and their basic properties and characterizations are studied.

How to cite

top

Thakur, Samajh, Singh, and Malviya, R.. "Pairwise fuzzy irresolute mappings." Mathematica Bohemica 121.3 (1996): 273-280. <http://eudml.org/doc/247971>.

@article{Thakur1996,
abstract = {In this paper the concepts of fuzzy irresolute and fuzzy presemiopen mappings due to Yalvac [12] are generalized to fuzzy bitopological spaces and their basic properties and characterizations are studied.},
author = {Thakur, Samajh, Singh, Malviya, R.},
journal = {Mathematica Bohemica},
keywords = {fuzzy bitopological spaces; $(i, j)$-fuzzy semiopen; $(i, j)$-fuzzy semiclosed; $(i,j)$-semineighbourhood; $(i,j)$-semi-$Q$-neighbourhood; fuzzy bitopological spaces; -fuzzy semiopen; -fuzzy semiclosed; -semineighbourhood; -semi--neighbourhood},
language = {eng},
number = {3},
pages = {273-280},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Pairwise fuzzy irresolute mappings},
url = {http://eudml.org/doc/247971},
volume = {121},
year = {1996},
}

TY - JOUR
AU - Thakur, Samajh, Singh
AU - Malviya, R.
TI - Pairwise fuzzy irresolute mappings
JO - Mathematica Bohemica
PY - 1996
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 121
IS - 3
SP - 273
EP - 280
AB - In this paper the concepts of fuzzy irresolute and fuzzy presemiopen mappings due to Yalvac [12] are generalized to fuzzy bitopological spaces and their basic properties and characterizations are studied.
LA - eng
KW - fuzzy bitopological spaces; $(i, j)$-fuzzy semiopen; $(i, j)$-fuzzy semiclosed; $(i,j)$-semineighbourhood; $(i,j)$-semi-$Q$-neighbourhood; fuzzy bitopological spaces; -fuzzy semiopen; -fuzzy semiclosed; -semineighbourhood; -semi--neighbourhood
UR - http://eudml.org/doc/247971
ER -

References

top
  1. K. K. Azad, 10.1016/0022-247X(81)90222-5, J. Math. Anal. Appl. 82 (1981), 14-32. (1981) MR0626738DOI10.1016/0022-247X(81)90222-5
  2. C. L. Chang, 10.1016/0022-247X(68)90057-7, J. Math. Anal. Appl. 24 (1968), 182-190. (1968) Zbl0167.51001MR0236859DOI10.1016/0022-247X(68)90057-7
  3. M. H. Ghanim E. E. Kerre, A. S. Mashhour, 10.1016/0022-247X(84)90212-9, J. Math. Anal. Appl. 102 (1984), 189-202. (1984) MR0751352DOI10.1016/0022-247X(84)90212-9
  4. A. Kandil, Biproximities and fuzzy bitopological spaces, Simon Stevin 63 (1989), 45-66. (1989) Zbl0681.54015MR1021455
  5. N. Levine, 10.1080/00029890.1963.11990039, Amer. Math. Monthly 70 (1963), 36-41. (1963) Zbl0113.16304MR0166752DOI10.1080/00029890.1963.11990039
  6. S. N. Maheshwari, R. Prasad, Semi-open sets and semi continuity in bitopological spaces, Math. Notae XXVI (1977), 29-37. (1977) MR0536731
  7. S. N. Maheshwari, R. Prasad, Pairwise irresolute functions, Mathematica 18 (1976), no. 2, 169-172. (1976) Zbl0387.54015MR0493987
  8. P. M. Pu, Y. M. Liu, Fuzzy topology I, Neighbourhood structure of a fuzzy point and Moore Smith Convergence, J. Math. Anal. Appl. 76 (1980), 371-599. (1980) MR0587361
  9. P. M. Pu, Y. M. Liu, Fuzzy topology II, Product and Quotient spaces, J. Math. Anal. Appl. 77 (1980), 20-37. (1980) Zbl0447.54007MR0591259
  10. S. S. Thakur, R. Malviya, Semi open sets and semi continuity in fuzzy bitopological spaces, Fuzzy Sets and Systems. (Accepted). Zbl0867.54016
  11. T. H. Yalvac, Fuzzy sets and functions on fuzzy spaces, J. Math. Anal. Appl. 120 (1987), 409-423. (1987) Zbl0639.54004MR0900757
  12. T. H. Yalvac, 10.1016/0022-247X(88)90067-4, J. Math. Anal. Appl. 132 (1988), 356-364. (1988) Zbl0645.54007MR0943512DOI10.1016/0022-247X(88)90067-4
  13. L. A. Zadeh, 10.1016/S0019-9958(65)90241-X, Inform. and Control 8 (1965), 338-353. (1965) Zbl0139.24606MR0219427DOI10.1016/S0019-9958(65)90241-X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.