Two solutions for a nonlinear Dirichlet problem with positive forcing

J. Matos; Luis Sanchez

Mathematica Bohemica (1996)

  • Volume: 121, Issue: 1, page 41-54
  • ISSN: 0862-7959

Abstract

top
Given a semilinear elliptic boundary value problem having the zero solution and where the nonlinearity crosses the first eigenvalue, we perturb it by a positive forcing term; we show the existence of two solutions under certain conditions that can be weakened in the onedimensional case.

How to cite

top

Matos, J., and Sanchez, Luis. "Two solutions for a nonlinear Dirichlet problem with positive forcing." Mathematica Bohemica 121.1 (1996): 41-54. <http://eudml.org/doc/247982>.

@article{Matos1996,
abstract = {Given a semilinear elliptic boundary value problem having the zero solution and where the nonlinearity crosses the first eigenvalue, we perturb it by a positive forcing term; we show the existence of two solutions under certain conditions that can be weakened in the onedimensional case.},
author = {Matos, J., Sanchez, Luis},
journal = {Mathematica Bohemica},
keywords = {semilinear elliptic equations; multiple solutions; shooting method; variational methods; semilinear elliptic equations; multiple solutions; shooting method; variational methods},
language = {eng},
number = {1},
pages = {41-54},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Two solutions for a nonlinear Dirichlet problem with positive forcing},
url = {http://eudml.org/doc/247982},
volume = {121},
year = {1996},
}

TY - JOUR
AU - Matos, J.
AU - Sanchez, Luis
TI - Two solutions for a nonlinear Dirichlet problem with positive forcing
JO - Mathematica Bohemica
PY - 1996
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 121
IS - 1
SP - 41
EP - 54
AB - Given a semilinear elliptic boundary value problem having the zero solution and where the nonlinearity crosses the first eigenvalue, we perturb it by a positive forcing term; we show the existence of two solutions under certain conditions that can be weakened in the onedimensional case.
LA - eng
KW - semilinear elliptic equations; multiple solutions; shooting method; variational methods; semilinear elliptic equations; multiple solutions; shooting method; variational methods
UR - http://eudml.org/doc/247982
ER -

References

top
  1. A. Ambrosetti G. Prodi, 10.1007/BF02412022, Ann. Mat. Pura Appl. (4) 93 (1972), 231-247. (1972) MR0320844DOI10.1007/BF02412022
  2. H. Berestycki D. G. Figueiredo, 10.1080/03605308108820172, Comm. Partial Differential Equations, 6 (1) (1981), 91-120. (1981) MR0597753DOI10.1080/03605308108820172
  3. M. S. Berger E. Podolak, 10.1512/iumj.1975.24.24066, Indiana Univ. Math. J. 24 (1975), 837-846. (1975) MR0377274DOI10.1512/iumj.1975.24.24066
  4. H. Brezis L. Nirenberg, H 1 versus C 1 local minimizers, C. R. Acad. Sci. Paris 317, Serie I (1993), 465-472. (1993) MR1239032
  5. D. De Figueiredo, On the superlinear Ambrosetti-Prodi problem, Nonlinear Anal. 8 (1984), no. 6, 351-366. (1984) Zbl0554.35045MR0746723
  6. G. Dinca L. Sanchez, 10.1007/BF01193950, Nonlinear Differential Equations Appl. 1 (1994), 163-178. (1994) MR1273348DOI10.1007/BF01193950
  7. J. V. A. Gongalves, On multiple solutions for a semilinear Dirichlet problem, Houston J. Math. 12 (1986), 43-53. (1986) MR0855792
  8. J. P. Gossez P. Omari, 10.1016/0362-546X(90)90069-S, Nonlinear Anal. 14 (1990), no. 12, 1079-1104. (1990) MR1059615DOI10.1016/0362-546X(90)90069-S
  9. H. Kaper M. K. Kwong, 10.1137/0523029, Siam J. Math. Anal. 23 (1992), 571-578. (1992) MR1158822DOI10.1137/0523029
  10. J. L. Kazdan F. Warner, 10.1002/cpa.3160280502, Comm. Pure Appl. Math. 28 (1975), 567-597. (1975) MR0477445DOI10.1002/cpa.3160280502
  11. A. C. Lazer P. J. McKenna, On a conjecture related to the number of solutions of a nonlinear Dirichlet problem, Proc. Roy. Soc. Edinburgh Sect. A 95 (1983), 275-283. (1983) MR0726879
  12. A. Marino A. M. Micheletti A. Pistoia, Some variational results on semilinear problems with asymptotically nonsymmetric behaviour, Quaderno Sc. Normale Superiore Nonlinear Analysis, A Tribute in honour of G. Prodi. 1991, pp. 243-256. (1991) MR1205387
  13. J. Mawhin, Point fixes, points critiques et problèmes aux limites, Sem. Math. Sup. 92. Presses Univ. Montreal, 1985. (1985) MR0789982
  14. P. Rabinowitz, Minimax methods in critical point theory and applications to differential equations, CBMS Reg. Conf. 65. Amer. Math. Soc, Providence, R.I., 1986. (1986) MR0845785
  15. F. Zanolin, Continuation theorems for the periodic problem via the translation operator, Preprint, 1993. (1993) MR1490010
  16. E. Zeidler, Nonlinear Functional Analysis and its Applications I, Springer-Verlag, New York, 1985. (1985) MR0816732
  17. B. Zinner, Multiplicity of solutions for two point boundary value problems with jumping nonlinearities, J. Math. Anal. Appl. 176 (1993), 282-291. (1993) MR1222169

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.