Two solutions for a nonlinear Dirichlet problem with positive forcing
Mathematica Bohemica (1996)
- Volume: 121, Issue: 1, page 41-54
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMatos, J., and Sanchez, Luis. "Two solutions for a nonlinear Dirichlet problem with positive forcing." Mathematica Bohemica 121.1 (1996): 41-54. <http://eudml.org/doc/247982>.
@article{Matos1996,
abstract = {Given a semilinear elliptic boundary value problem having the zero solution and where the nonlinearity crosses the first eigenvalue, we perturb it by a positive forcing term; we show the existence of two solutions under certain conditions that can be weakened in the onedimensional case.},
author = {Matos, J., Sanchez, Luis},
journal = {Mathematica Bohemica},
keywords = {semilinear elliptic equations; multiple solutions; shooting method; variational methods; semilinear elliptic equations; multiple solutions; shooting method; variational methods},
language = {eng},
number = {1},
pages = {41-54},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Two solutions for a nonlinear Dirichlet problem with positive forcing},
url = {http://eudml.org/doc/247982},
volume = {121},
year = {1996},
}
TY - JOUR
AU - Matos, J.
AU - Sanchez, Luis
TI - Two solutions for a nonlinear Dirichlet problem with positive forcing
JO - Mathematica Bohemica
PY - 1996
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 121
IS - 1
SP - 41
EP - 54
AB - Given a semilinear elliptic boundary value problem having the zero solution and where the nonlinearity crosses the first eigenvalue, we perturb it by a positive forcing term; we show the existence of two solutions under certain conditions that can be weakened in the onedimensional case.
LA - eng
KW - semilinear elliptic equations; multiple solutions; shooting method; variational methods; semilinear elliptic equations; multiple solutions; shooting method; variational methods
UR - http://eudml.org/doc/247982
ER -
References
top- A. Ambrosetti G. Prodi, 10.1007/BF02412022, Ann. Mat. Pura Appl. (4) 93 (1972), 231-247. (1972) MR0320844DOI10.1007/BF02412022
- H. Berestycki D. G. Figueiredo, 10.1080/03605308108820172, Comm. Partial Differential Equations, 6 (1) (1981), 91-120. (1981) MR0597753DOI10.1080/03605308108820172
- M. S. Berger E. Podolak, 10.1512/iumj.1975.24.24066, Indiana Univ. Math. J. 24 (1975), 837-846. (1975) MR0377274DOI10.1512/iumj.1975.24.24066
- H. Brezis L. Nirenberg, versus local minimizers, C. R. Acad. Sci. Paris 317, Serie I (1993), 465-472. (1993) MR1239032
- D. De Figueiredo, On the superlinear Ambrosetti-Prodi problem, Nonlinear Anal. 8 (1984), no. 6, 351-366. (1984) Zbl0554.35045MR0746723
- G. Dinca L. Sanchez, 10.1007/BF01193950, Nonlinear Differential Equations Appl. 1 (1994), 163-178. (1994) MR1273348DOI10.1007/BF01193950
- J. V. A. Gongalves, On multiple solutions for a semilinear Dirichlet problem, Houston J. Math. 12 (1986), 43-53. (1986) MR0855792
- J. P. Gossez P. Omari, 10.1016/0362-546X(90)90069-S, Nonlinear Anal. 14 (1990), no. 12, 1079-1104. (1990) MR1059615DOI10.1016/0362-546X(90)90069-S
- H. Kaper M. K. Kwong, 10.1137/0523029, Siam J. Math. Anal. 23 (1992), 571-578. (1992) MR1158822DOI10.1137/0523029
- J. L. Kazdan F. Warner, 10.1002/cpa.3160280502, Comm. Pure Appl. Math. 28 (1975), 567-597. (1975) MR0477445DOI10.1002/cpa.3160280502
- A. C. Lazer P. J. McKenna, On a conjecture related to the number of solutions of a nonlinear Dirichlet problem, Proc. Roy. Soc. Edinburgh Sect. A 95 (1983), 275-283. (1983) MR0726879
- A. Marino A. M. Micheletti A. Pistoia, Some variational results on semilinear problems with asymptotically nonsymmetric behaviour, Quaderno Sc. Normale Superiore Nonlinear Analysis, A Tribute in honour of G. Prodi. 1991, pp. 243-256. (1991) MR1205387
- J. Mawhin, Point fixes, points critiques et problèmes aux limites, Sem. Math. Sup. 92. Presses Univ. Montreal, 1985. (1985) MR0789982
- P. Rabinowitz, Minimax methods in critical point theory and applications to differential equations, CBMS Reg. Conf. 65. Amer. Math. Soc, Providence, R.I., 1986. (1986) MR0845785
- F. Zanolin, Continuation theorems for the periodic problem via the translation operator, Preprint, 1993. (1993) MR1490010
- E. Zeidler, Nonlinear Functional Analysis and its Applications I, Springer-Verlag, New York, 1985. (1985) MR0816732
- B. Zinner, Multiplicity of solutions for two point boundary value problems with jumping nonlinearities, J. Math. Anal. Appl. 176 (1993), 282-291. (1993) MR1222169
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.