Poly-Bernoulli numbers
Journal de théorie des nombres de Bordeaux (1997)
- Volume: 9, Issue: 1, page 221-228
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topKaneko, Masanobu. "Poly-Bernoulli numbers." Journal de théorie des nombres de Bordeaux 9.1 (1997): 221-228. <http://eudml.org/doc/247996>.
@article{Kaneko1997,
abstract = {By using polylogarithm series, we define “poly-Bernoulli numbers” which generalize classical Bernoulli numbers. We derive an explicit formula and a duality theorem for these numbers, together with a von Staudt-type theorem for di-Bernoulli numbers and another proof of a theorem of Vandiver.},
author = {Kaneko, Masanobu},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {poly-Bernoulli numbers; Stirling numbers of the second kind; von Staudt-type theorem; theorem of Vandiver; congruences},
language = {eng},
number = {1},
pages = {221-228},
publisher = {Université Bordeaux I},
title = {Poly-Bernoulli numbers},
url = {http://eudml.org/doc/247996},
volume = {9},
year = {1997},
}
TY - JOUR
AU - Kaneko, Masanobu
TI - Poly-Bernoulli numbers
JO - Journal de théorie des nombres de Bordeaux
PY - 1997
PB - Université Bordeaux I
VL - 9
IS - 1
SP - 221
EP - 228
AB - By using polylogarithm series, we define “poly-Bernoulli numbers” which generalize classical Bernoulli numbers. We derive an explicit formula and a duality theorem for these numbers, together with a von Staudt-type theorem for di-Bernoulli numbers and another proof of a theorem of Vandiver.
LA - eng
KW - poly-Bernoulli numbers; Stirling numbers of the second kind; von Staudt-type theorem; theorem of Vandiver; congruences
UR - http://eudml.org/doc/247996
ER -
References
top- [1] Gould, H.W.: Explicit formulas for Bernoulli numbers, Amer. Math. Monthly79 (1972), 44-51. Zbl0227.10010MR306102
- [2] Ireland, K. and Rosen, M.: A Classical Introduction to Modern Number Theory, second edition. Springer GTM84 (1990) Zbl0712.11001MR1070716
- [3] Jordan, Charles:Calculus of Finite Differences, Chelsea Publ. Co., New York, (1950) Zbl0041.05401MR183987
- [4] Vandiver, H.S.: On developments in an arithmetic theory of the Bernoulli and allied numbers, Scripta Math.25 (1961), 273-303 Zbl0100.26901MR142497
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.