On the Piatetski-Shapiro-Vinogradov theorem
Journal de théorie des nombres de Bordeaux (1997)
- Volume: 9, Issue: 1, page 11-23
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topKumchev, Angel. "On the Piatetski-Shapiro-Vinogradov theorem." Journal de théorie des nombres de Bordeaux 9.1 (1997): 11-23. <http://eudml.org/doc/248000>.
@article{Kumchev1997,
abstract = {In this paper we consider the asymptotic formula for the number of the solutions of the equation $p_1 + p_2 + p_3 = N$ where $N$ is an odd integer and the unknowns $p_i$ are prime numbers of the form $p_i = [ n^\{1/ \gamma _i\}]$. We use the two-dimensional van der Corput’s method to prove it under less restrictive conditions than before. In the most interesting case $\gamma _1 = \gamma _2 = \gamma _3 = \gamma $ our theorem implies that every sufficiently large odd integer $N$ may be written as the sum of three Piatetski-Shapiro primes of type $\gamma $ for $50/53$ < $\gamma $ < $1$.},
author = {Kumchev, Angel},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Piatetski-Shapiro primes; Goldbach problem; exponential sums; Piatetski-Shapiro-Vinogradov theorem; ternary Goldbach problem},
language = {eng},
number = {1},
pages = {11-23},
publisher = {Université Bordeaux I},
title = {On the Piatetski-Shapiro-Vinogradov theorem},
url = {http://eudml.org/doc/248000},
volume = {9},
year = {1997},
}
TY - JOUR
AU - Kumchev, Angel
TI - On the Piatetski-Shapiro-Vinogradov theorem
JO - Journal de théorie des nombres de Bordeaux
PY - 1997
PB - Université Bordeaux I
VL - 9
IS - 1
SP - 11
EP - 23
AB - In this paper we consider the asymptotic formula for the number of the solutions of the equation $p_1 + p_2 + p_3 = N$ where $N$ is an odd integer and the unknowns $p_i$ are prime numbers of the form $p_i = [ n^{1/ \gamma _i}]$. We use the two-dimensional van der Corput’s method to prove it under less restrictive conditions than before. In the most interesting case $\gamma _1 = \gamma _2 = \gamma _3 = \gamma $ our theorem implies that every sufficiently large odd integer $N$ may be written as the sum of three Piatetski-Shapiro primes of type $\gamma $ for $50/53$ < $\gamma $ < $1$.
LA - eng
KW - Piatetski-Shapiro primes; Goldbach problem; exponential sums; Piatetski-Shapiro-Vinogradov theorem; ternary Goldbach problem
UR - http://eudml.org/doc/248000
ER -
References
top- [1] R.C. Baker, G. Harman, J. Rivat, Primes of the form [nc], J. Number Theory50 (1995), 261-277. Zbl0822.11062MR1316821
- [2] A. Balog, J.P. Friedlander, A hybrid of theorems of Vinogradov and Piatetski-Shapiro, Pasific J. Math.156 (1992), 45-62. Zbl0726.11061MR1182255
- [3] S.W. Graham, G.A. Kolesnik, Van der Corput's Method of Exponential Sums, L.M.S. Lecture Notes126, Cambridge University Press, 1991. Zbl0713.11001
- [4] D.R. Heath-Brown, The Piatetski-Shapiro prime number theorem, J. Number Theory16 (1983), 242-266. Zbl0513.10042MR698168
- [5] C.-H. Jia, On the Piatetski-Shapiro prime number theorem (II), Science in China Ser.A36 (1993), 913-926. Zbl0790.11063MR1248537
- [6] ____, On the Piatetski-Shapiro prime number theorem, Chinese Ann. Math.15B:1 (1994), 9-22. Zbl0795.11038
- [7] ____, On the Piatetski-Shapiro-Vinogradov theorem, Acta Arith.73 (1995), 1-28. Zbl0834.11038MR1358184
- [8] G.A. Kolesnik, The distribution of primes in sequences of the form [nc], Mat. Zametki2 (1972), 117-128. Zbl0199.08904MR215799
- [9] ____, Primes of the form [nc], Pacific J. Math.118 (1985), 437-447. Zbl0571.10037MR789183
- [10] A. Kumchev, On the distribution of prime numbers of the form [nc], (preprint). Zbl0930.11067MR1689675
- [11] D. Leitmann, Abschatzung trigonometrischer summen,, J. Reine Angew. Math.317 (1980), 209-219. Zbl0421.10024MR581343
- [12] H.-Q. Liu, J. Rivat, On the Piatetski-Shapiro prime number theorem, Bull. London Math. Soc.24 (1992), 143-147. Zbl0772.11032
- [13] I.I. Piatetski-Shapiro, On the distribution of prime numbers in sequences of the form [f(n)], Mat. Sb.33 (1953), 559-566. Zbl0053.02702MR59302
- [14] J. Rivat, Autour d'un theoreme de Piatetski-Shapiro, Thesis, Université de Paris Sud, 1992.
- [15] I.M. Vinogradov, Representation of an odd number as the sum of three primes, Dokl. Akad. Nauk. SSSR15 (1937), 291-294. Zbl0016.29101JFM63.0131.04
- [16] E. Wirsing, Thin subbases, Analysis6 (1986), 285-306. Zbl0586.10032MR832752
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.