On the number of subgroups of finite abelian groups

Aleksandar Ivić

Journal de théorie des nombres de Bordeaux (1997)

  • Volume: 9, Issue: 2, page 371-381
  • ISSN: 1246-7405

Abstract

top
Let T ( x ) = K 1 x log 2 x + K 2 x log x + K 3 x + Δ ( x ) , where T ( x ) denotes the number of subgroups of all abelian groups whose order does not exceed x and whose rank does not exceed 2 , and Δ ( x ) is the error term. It is proved that 1 X Δ 2 ( x ) d x X 2 log 31 / 3 X , 1 X Δ 2 ( x ) d x = Ω ( X 2 log 4 X ) .

How to cite

top

Ivić, Aleksandar. "On the number of subgroups of finite abelian groups." Journal de théorie des nombres de Bordeaux 9.2 (1997): 371-381. <http://eudml.org/doc/248010>.

@article{Ivić1997,
abstract = {Let\begin\{equation*\} T(x) = K\_1x \log ^2 x + K\_2x \log x + K\_3x + \Delta (x), \end\{equation*\}where $T(x)$ denotes the number of subgroups of all abelian groups whose order does not exceed $x$ and whose rank does not exceed $2$, and $\Delta (x)$ is the error term. It is proved that\begin\{equation*\} \int \_1^X \Delta ^2(x) dx \ll X^2 \log ^\{31/3\} X, \int \_1^X \Delta ^2 ( x) dx = \Omega (X^2 \log ^4 X).\end\{equation*\}},
author = {Ivić, Aleksandar},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {number of subgroups of finite abelian groups; asymptotic results on counting functions for algebraic structures},
language = {eng},
number = {2},
pages = {371-381},
publisher = {Université Bordeaux I},
title = {On the number of subgroups of finite abelian groups},
url = {http://eudml.org/doc/248010},
volume = {9},
year = {1997},
}

TY - JOUR
AU - Ivić, Aleksandar
TI - On the number of subgroups of finite abelian groups
JO - Journal de théorie des nombres de Bordeaux
PY - 1997
PB - Université Bordeaux I
VL - 9
IS - 2
SP - 371
EP - 381
AB - Let\begin{equation*} T(x) = K_1x \log ^2 x + K_2x \log x + K_3x + \Delta (x), \end{equation*}where $T(x)$ denotes the number of subgroups of all abelian groups whose order does not exceed $x$ and whose rank does not exceed $2$, and $\Delta (x)$ is the error term. It is proved that\begin{equation*} \int _1^X \Delta ^2(x) dx \ll X^2 \log ^{31/3} X, \int _1^X \Delta ^2 ( x) dx = \Omega (X^2 \log ^4 X).\end{equation*}
LA - eng
KW - number of subgroups of finite abelian groups; asymptotic results on counting functions for algebraic structures
UR - http://eudml.org/doc/248010
ER -

References

top
  1. [1] G. Bhowmik, Average order of certain functions connected with arithmetic of matrices, J. Indian Math. Soc.59 (1993), 97-106. Zbl1015.11511MR1248950
  2. [2] G. Bhowmik and H. Menzer, On the number of subgroups of finite Abelian groups, Abh. Math. Sem. Univ. Hamburg, in press. Zbl0890.11027MR1481529
  3. [3] G. Bhowmik and J. Wu, On the asymptotic behaviour of the number of subgroups of finite abelian groups, Archiv der Mathematik69 (1997), 95-104. Zbl0907.11030MR1458695
  4. [4] A. Ivi, The Riemann zeta-function, John Wiley & Sons, New York (1985). Zbl0556.10026MR792089
  5. [5] A. Ivić, The general divisor problem, J. Number Theory27 (1987), 73-91. Zbl0619.10040MR904009
  6. [6] H.-Q. Liu, Divisor problems of 4 and 3 dimensions, Acta Arith.73 (1995), 249-269. Zbl0846.11056MR1364462
  7. [7] H. Menzer, On the number of subgroups of finite Abelian groups, Proc. Conf. Analytic and Elementary Number Theory (Vienna, July 18-20, 1996), Universität Wien & Universität für Bodenkultur, Eds. W.G. Nowak and J. Schoißengeier, Wien (1996), 181-188. Zbl0879.11049
  8. [8] K. Ramachandra, Progress towards a conjecture on the mean value of Titchmarsh series, Recent Progress in Analytic Number Theory, Academic Press, London1 (1981), 303-318. Zbl0465.10033MR637354
  9. [9] K. Ramachandra, On the Mean- Value and Omega-Theorems for the Riemann zeta-function, Tata Institute of Fund. Research, Bombay, 1995. Zbl0845.11003MR1332493

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.