On the number of subgroups of finite abelian groups
Journal de théorie des nombres de Bordeaux (1997)
- Volume: 9, Issue: 2, page 371-381
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topIvić, Aleksandar. "On the number of subgroups of finite abelian groups." Journal de théorie des nombres de Bordeaux 9.2 (1997): 371-381. <http://eudml.org/doc/248010>.
@article{Ivić1997,
abstract = {Let\begin\{equation*\} T(x) = K\_1x \log ^2 x + K\_2x \log x + K\_3x + \Delta (x), \end\{equation*\}where $T(x)$ denotes the number of subgroups of all abelian groups whose order does not exceed $x$ and whose rank does not exceed $2$, and $\Delta (x)$ is the error term. It is proved that\begin\{equation*\} \int \_1^X \Delta ^2(x) dx \ll X^2 \log ^\{31/3\} X, \int \_1^X \Delta ^2 ( x) dx = \Omega (X^2 \log ^4 X).\end\{equation*\}},
author = {Ivić, Aleksandar},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {number of subgroups of finite abelian groups; asymptotic results on counting functions for algebraic structures},
language = {eng},
number = {2},
pages = {371-381},
publisher = {Université Bordeaux I},
title = {On the number of subgroups of finite abelian groups},
url = {http://eudml.org/doc/248010},
volume = {9},
year = {1997},
}
TY - JOUR
AU - Ivić, Aleksandar
TI - On the number of subgroups of finite abelian groups
JO - Journal de théorie des nombres de Bordeaux
PY - 1997
PB - Université Bordeaux I
VL - 9
IS - 2
SP - 371
EP - 381
AB - Let\begin{equation*} T(x) = K_1x \log ^2 x + K_2x \log x + K_3x + \Delta (x), \end{equation*}where $T(x)$ denotes the number of subgroups of all abelian groups whose order does not exceed $x$ and whose rank does not exceed $2$, and $\Delta (x)$ is the error term. It is proved that\begin{equation*} \int _1^X \Delta ^2(x) dx \ll X^2 \log ^{31/3} X, \int _1^X \Delta ^2 ( x) dx = \Omega (X^2 \log ^4 X).\end{equation*}
LA - eng
KW - number of subgroups of finite abelian groups; asymptotic results on counting functions for algebraic structures
UR - http://eudml.org/doc/248010
ER -
References
top- [1] G. Bhowmik, Average order of certain functions connected with arithmetic of matrices, J. Indian Math. Soc.59 (1993), 97-106. Zbl1015.11511MR1248950
- [2] G. Bhowmik and H. Menzer, On the number of subgroups of finite Abelian groups, Abh. Math. Sem. Univ. Hamburg, in press. Zbl0890.11027MR1481529
- [3] G. Bhowmik and J. Wu, On the asymptotic behaviour of the number of subgroups of finite abelian groups, Archiv der Mathematik69 (1997), 95-104. Zbl0907.11030MR1458695
- [4] A. Ivi, The Riemann zeta-function, John Wiley & Sons, New York (1985). Zbl0556.10026MR792089
- [5] A. Ivić, The general divisor problem, J. Number Theory27 (1987), 73-91. Zbl0619.10040MR904009
- [6] H.-Q. Liu, Divisor problems of 4 and 3 dimensions, Acta Arith.73 (1995), 249-269. Zbl0846.11056MR1364462
- [7] H. Menzer, On the number of subgroups of finite Abelian groups, Proc. Conf. Analytic and Elementary Number Theory (Vienna, July 18-20, 1996), Universität Wien & Universität für Bodenkultur, Eds. W.G. Nowak and J. Schoißengeier, Wien (1996), 181-188. Zbl0879.11049
- [8] K. Ramachandra, Progress towards a conjecture on the mean value of Titchmarsh series, Recent Progress in Analytic Number Theory, Academic Press, London1 (1981), 303-318. Zbl0465.10033MR637354
- [9] K. Ramachandra, On the Mean- Value and Omega-Theorems for the Riemann zeta-function, Tata Institute of Fund. Research, Bombay, 1995. Zbl0845.11003MR1332493
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.