Sums of squares in [ k ]

Fernando Chamizo

Journal de théorie des nombres de Bordeaux (1997)

  • Volume: 9, Issue: 1, page 25-39
  • ISSN: 1246-7405

How to cite


Chamizo, Fernando. "Sums of squares in $\mathbb {Z}[\sqrt{k}]$." Journal de théorie des nombres de Bordeaux 9.1 (1997): 25-39. <>.

abstract = {},
author = {Chamizo, Fernando},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {circle problem; real quadratic rings; spectral theory; asymptotic formula; estimation of automorphic -functions},
language = {eng},
number = {1},
pages = {25-39},
publisher = {Université Bordeaux I},
title = {Sums of squares in $\mathbb \{Z\}[\sqrt\{k\}]$},
url = {},
volume = {9},
year = {1997},

AU - Chamizo, Fernando
TI - Sums of squares in $\mathbb {Z}[\sqrt{k}]$
JO - Journal de théorie des nombres de Bordeaux
PY - 1997
PB - Université Bordeaux I
VL - 9
IS - 1
SP - 25
EP - 39
AB -
LA - eng
KW - circle problem; real quadratic rings; spectral theory; asymptotic formula; estimation of automorphic -functions
UR -
ER -


  1. [Ch1] F. Chamizo, Some applications of large sieve in Riemann surfaces, Acta Arithmetica77 (1996), 315-337. Zbl0863.11062MR1414513
  2. [Ch2] F. Chamizo, Correlated sums of r(n), Preprint, 1996. MR1661040
  3. [Fr] F. Fricker, Einführung in die Gitterpunktlehre, vol. 73, Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften; Math. Reihe, Birkhaüser Verlag, 1982. Zbl0489.10001MR673938
  4. [Ga] C.F. Gauss, De nexu inter multitudinem classium in quas formae binariae secundi gradus distribuntur, eaurumque determinatem [II], Werke V.2, (1839), 269-291. 
  5. [Go] A. Good, Approximative Funktionalgleichungen und Mittelwertsätze Dirichletreihen, die Spitzenformen assoziiert sind, Comm. Math. Hel.50 (1975), 327-361. Zbl0315.10038MR401651
  6. [Gr-Ry] I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series and Products, Fifth edition, (Editor: A. Jeffrey), Academic Press, 1994. Zbl0918.65002MR1243179
  7. [Ha] G.H. Hardy, The average order of the arithmetical functions P(x) and Δ(x), Proc. London Math. Soc. (2) 15 (1916), 192-213. JFM46.0262.01
  8. [Hu] M.N. Huxley, Exponential sums and lattice points II, Proc. London Math. Soc. (3) 66 (1993), 279-301. Zbl0820.11060MR1199067
  9. [Iv] A. Ivić, Lectures on Mean Values of the Riemann Zeta-Function, Lectures on Mathematics and Physics, vol. 82, Tata institute of fundamental research, Springer Verlag, 1991. Zbl0758.11036MR1230387
  10. [Iw1] H. Iwaniec, The spectral growth of automorphic L-functions, J. Reine Angew. Math.428 (1992), 139-159. Zbl0746.11024MR1166510
  11. [Iw2] H. Iwaniec, Introduction to the Spectral Theory of Automorphic Forms, Biblioteca de la Revista Matemática Iberoamericana, Madrid, 1995. Zbl0847.11028MR1325466
  12. [Iw-Sa] H. Iwaniec and P. Sarnak, L∞ norms of eigenfunctions of arithmetic surfaces, Ann. of Math.141 (1995), 301-320. Zbl0833.11019
  13. [Kl] H.D. Kloosterman, On the representation of numbers in the form ax2 + by2 + cz2 + dt2, Acta Mathematica49 (1926), 407-464. JFM53.0155.01
  14. [La] E. Landau, Über Gitterpunkte in mehrdimensionalen Ellipsoiden, Math. Zeitschrift21 (1924), 126-132. Zbl50.0118.01MR1544690JFM50.0118.01
  15. [Lu] W. Luo, The spectral mean value for linear forms in twisted coefficients of cusp forms, Acta Arithmetica70 (1995), 377-391. Zbl0821.11035MR1330741
  16. [Ph-Ru] R.S. Phillips and Z. Rudnick, The circle problem in the hyperbolic plane, J. Funct. Anal.121 (1994), 78-116. Zbl0812.11035MR1270589
  17. [Ra] U. Rausch, Zum Ellipsoidproblem in algebraischen Zahlkörpen, Acta Arithmetica58 (1991), 309-333. Zbl0734.11050MR1121090
  18. [Sc] W. Schaal, Übertragung des Kreisproblems auf reell-quadratische Zahlkörper, Math. Ann.145 (1962), 273-284. Zbl0099.03603MR142539

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.