On a generalized Wiener-Hopf integral equation
Archivum Mathematicum (1997)
- Volume: 033, Issue: 4, page 273-278
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topMcGregor, Malcolm T.. "On a generalized Wiener-Hopf integral equation." Archivum Mathematicum 033.4 (1997): 273-278. <http://eudml.org/doc/248018>.
@article{McGregor1997,
abstract = {Let $\alpha $ be such that $0<\alpha <\frac\{1\}\{2\}$. In this note we use the Mittag-Leffler partial fractions expansion for $F_\alpha (\theta )=\Gamma \left(1-\alpha -\frac\{\theta \}\{\pi \}\right) \Gamma (\alpha )/ \Gamma \left( \alpha -\frac\{\theta \}\{\pi \}\right) \Gamma (1-\alpha )$ to obtain a solution of a Wiener-Hopf integral equation.},
author = {McGregor, Malcolm T.},
journal = {Archivum Mathematicum},
keywords = {Wiener-Hopf integral equation},
language = {eng},
number = {4},
pages = {273-278},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On a generalized Wiener-Hopf integral equation},
url = {http://eudml.org/doc/248018},
volume = {033},
year = {1997},
}
TY - JOUR
AU - McGregor, Malcolm T.
TI - On a generalized Wiener-Hopf integral equation
JO - Archivum Mathematicum
PY - 1997
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 033
IS - 4
SP - 273
EP - 278
AB - Let $\alpha $ be such that $0<\alpha <\frac{1}{2}$. In this note we use the Mittag-Leffler partial fractions expansion for $F_\alpha (\theta )=\Gamma \left(1-\alpha -\frac{\theta }{\pi }\right) \Gamma (\alpha )/ \Gamma \left( \alpha -\frac{\theta }{\pi }\right) \Gamma (1-\alpha )$ to obtain a solution of a Wiener-Hopf integral equation.
LA - eng
KW - Wiener-Hopf integral equation
UR - http://eudml.org/doc/248018
ER -
References
top- An Introduction to Probability Theory and Its Applications, Vol. II, John Wiley & Sons, New York, 1966. Zbl0598.60003MR0210154
- On a Wiener-Hopf integral equation, J. Integral Eqns. & Applns. (4)7 (1995), 475-483. Zbl0849.45001MR1382065
- The Wiener-Hopf Technique, Pergamon Press, New York, 1958. Zbl0657.35001MR0102719
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.