The inverse distribution for a dichotomous random variable
Elisabetta Bona; Dario Sacchetti
Commentationes Mathematicae Universitatis Carolinae (1997)
- Volume: 38, Issue: 2, page 385-394
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBona, Elisabetta, and Sacchetti, Dario. "The inverse distribution for a dichotomous random variable." Commentationes Mathematicae Universitatis Carolinae 38.2 (1997): 385-394. <http://eudml.org/doc/248047>.
@article{Bona1997,
abstract = {In this paper we will deal with the determination of the inverse of a dichotomous probability distribution. In particular it will be shown that a dichotomous distribution admit inverse if and only if it corresponds to a random variable assuming values $(0,a)$, $\,a\in \mathbb \{R\}^\{+\}$. Moreover we will provide two general results about the behaviour of the inverse distribution relative to the power and to a linear transformation of a measure.},
author = {Bona, Elisabetta, Sacchetti, Dario},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {inverse measure; inverse probability distribution; Laplace transform; variance function; inverse measure; inverse probability distribution; Laplace transform; variance function},
language = {eng},
number = {2},
pages = {385-394},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The inverse distribution for a dichotomous random variable},
url = {http://eudml.org/doc/248047},
volume = {38},
year = {1997},
}
TY - JOUR
AU - Bona, Elisabetta
AU - Sacchetti, Dario
TI - The inverse distribution for a dichotomous random variable
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1997
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 38
IS - 2
SP - 385
EP - 394
AB - In this paper we will deal with the determination of the inverse of a dichotomous probability distribution. In particular it will be shown that a dichotomous distribution admit inverse if and only if it corresponds to a random variable assuming values $(0,a)$, $\,a\in \mathbb {R}^{+}$. Moreover we will provide two general results about the behaviour of the inverse distribution relative to the power and to a linear transformation of a measure.
LA - eng
KW - inverse measure; inverse probability distribution; Laplace transform; variance function; inverse measure; inverse probability distribution; Laplace transform; variance function
UR - http://eudml.org/doc/248047
ER -
References
top- Dieudonné J., Infinitesimal Calculus, Houghton Hifflin, Boston, 1971. MR0349286
- Guest P.B., Laplace transforms and an introduction to distributions, Series mathematics and its applications, Ellis Horwood, 1991. Zbl0734.44002MR1287158
- Mora M., Classification des functions-variance cubiques des families exponentielles, C.R. Acad. Sci. Paris 302 sér. 1, 16 (1986), 582-591. (1986) MR0844163
- Letac G., Mora M., Natural real exponential families with cubic variance functions, The Annals of Statistics 18 (1990), 1-37. (1990) Zbl0714.62010MR1041384
- Morris C.N., Natural exponential families with quadratic variance functions, The Annals of Statistics 10 (1982), 65-80. (1982) Zbl0498.62015MR0642719
- Sacchetti D., Inverse distributions: an example of non existence, Accademia di scienze, lettere ed arti di Palermo, 1993.
- Serrecchia A., Inverse distributions, Publ. de l'Inst. de Stat. de l'Univ. de PARIS XXXI 1 (1986), 71-85. (1986) Zbl0651.62010MR0903423
- Seshadri V., The Inverse Gaussian Distribution, Clarendon Press, Oxford, 1993. Zbl0942.62011MR1306281
- Tweedie H.C.K., Inverse statistical deviates, Nature (1945), 155-453. (1945) MR0011907
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.