On two results of Singhof

Augustin-Liviu Mare

Commentationes Mathematicae Universitatis Carolinae (1997)

  • Volume: 38, Issue: 2, page 379-383
  • ISSN: 0010-2628

Abstract

top
For a compact connected semisimple Lie group G we shall prove two results (both related with Singhof’s paper [13]) on the Lusternik-Schnirelmann category of the adjoint orbits of G , respectively the 1-dimensional relative category of a maximal torus T in G . The techniques will be classical, but we shall also apply some basic results concerning the so-called 𝒜 -category (cf. [14]).

How to cite

top

Mare, Augustin-Liviu. "On two results of Singhof." Commentationes Mathematicae Universitatis Carolinae 38.2 (1997): 379-383. <http://eudml.org/doc/248054>.

@article{Mare1997,
abstract = {For a compact connected semisimple Lie group $G$ we shall prove two results (both related with Singhof’s paper [13]) on the Lusternik-Schnirelmann category of the adjoint orbits of $G$, respectively the 1-dimensional relative category of a maximal torus $T$ in $G$. The techniques will be classical, but we shall also apply some basic results concerning the so-called $\mathcal \{A\}$-category (cf. [14]).},
author = {Mare, Augustin-Liviu},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Lusternik-Schnirelmann category; Lie groups; adjoint orbits; Lyusternik-Shnirel'man category; semisimple Lie group; coadjoint orbit},
language = {eng},
number = {2},
pages = {379-383},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On two results of Singhof},
url = {http://eudml.org/doc/248054},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Mare, Augustin-Liviu
TI - On two results of Singhof
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1997
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 38
IS - 2
SP - 379
EP - 383
AB - For a compact connected semisimple Lie group $G$ we shall prove two results (both related with Singhof’s paper [13]) on the Lusternik-Schnirelmann category of the adjoint orbits of $G$, respectively the 1-dimensional relative category of a maximal torus $T$ in $G$. The techniques will be classical, but we shall also apply some basic results concerning the so-called $\mathcal {A}$-category (cf. [14]).
LA - eng
KW - Lusternik-Schnirelmann category; Lie groups; adjoint orbits; Lyusternik-Shnirel'man category; semisimple Lie group; coadjoint orbit
UR - http://eudml.org/doc/248054
ER -

References

top
  1. Borel A., Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. Math. 57 (1953), 115-207. (1953) Zbl0052.40001MR0051508
  2. Bott R., Samelson H., Applications of the theory of Morse to symmetric spaces, Amer. J. Math. 80 (1958), 964-1029. (1958) MR0105694
  3. Bröcker Th., tom Dieck T., Representations of Compact Lie Groups, Springer Verlag, 1985. MR0781344
  4. Clapp M., Puppe D., Invariants of the Lusternik-Schnirelmann type and the topology of critical sets, Trans. Amer. Math. Soc. 298 (1986), 604-620. (1986) Zbl0618.55003MR0860382
  5. Eilenberg S., Ganea T., On the Lusternik-Schnirelmann category of abstract groups, Ann. of Math. 65 (1957), 517-518. (1957) Zbl0079.25401MR0085510
  6. Fox R.H., On the Lusternik-Schnirelmann category, Ann. of Math. 42 (1941), 333-370. (1941) Zbl0027.43104MR0004108
  7. Ganea T., Lusternik-Schnirelmann category and strong category, Illinois J. Math. 11 (1967), 417-427. (1967) Zbl0149.40703MR0229240
  8. Hsiang W.Y., Palais R.S., Terng C.L., The topology of isoparametric submanifolds, J. Diff. Geom. 27 (1988), 423-461. (1988) Zbl0618.57018MR0940113
  9. Palais R.S., Terng C.L., Critical Point Theory and Submanifolds Geometry, Springer Verlag, 1988. MR0972503
  10. Pop I., Topologie Algebraică, Romanian Ed. Ştiinţifică, Bucureşti, 1990. MR1202715
  11. Postnikov M., Lie Groups and Lie Algebras, Mir Publishers, Moscow, 1986. Zbl0597.22001MR0905471
  12. Ramanujam S., Applications of Morse theory to some homogeneous spaces, Tohoku Math. J. 21 (1969), 343-354. (1969) 
  13. Singhof W., On the Lusternik-Schnirelmann category of Lie groups, Math. Z. 145 (1975), 111-116. (1975) Zbl0315.55012MR0391075

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.