Antiproximinal sets in the Banach space
Commentationes Mathematicae Universitatis Carolinae (1997)
- Volume: 38, Issue: 2, page 247-253
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCobzaş, S.. "Antiproximinal sets in the Banach space $c(X)$." Commentationes Mathematicae Universitatis Carolinae 38.2 (1997): 247-253. <http://eudml.org/doc/248056>.
@article{Cobzaş1997,
abstract = {If $X$ is a Banach space then the Banach space $c(X)$ of all $X$-valued convergent sequences contains a nonvoid bounded closed convex body $V$ such that no point in $C(X)\setminus V$ has a nearest point in $V$.},
author = {Cobzaş, S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {antiproximinal sets; best approximation; antiproximinal sets; best approximation},
language = {eng},
number = {2},
pages = {247-253},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Antiproximinal sets in the Banach space $c(X)$},
url = {http://eudml.org/doc/248056},
volume = {38},
year = {1997},
}
TY - JOUR
AU - Cobzaş, S.
TI - Antiproximinal sets in the Banach space $c(X)$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1997
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 38
IS - 2
SP - 247
EP - 253
AB - If $X$ is a Banach space then the Banach space $c(X)$ of all $X$-valued convergent sequences contains a nonvoid bounded closed convex body $V$ such that no point in $C(X)\setminus V$ has a nearest point in $V$.
LA - eng
KW - antiproximinal sets; best approximation; antiproximinal sets; best approximation
UR - http://eudml.org/doc/248056
ER -
References
top- Chakalov V.L., Extremal elements in some normed spaces, Comptes Rendus Acad. Bulgare des Sciences 36 (1983), 173-176. (1983) MR0709005
- Cobzaş S., Very non-proximinal sets in (in Romanian), Rev. Anal. Numer. Teoria Approx. 2 (1973), 137-141. (1973) MR0393980
- Cobzaş S., Antiproximinal sets in some Banach spaces, Math. Balkanica 4 (1974), 79-82. (1974) MR0377381
- Cobzaş S., Convex antiproximinal sets in the spaces and (in Russian), Matem. Zametki 17 (1975), 449-457. (1975) MR0407567
- Cobzaş S., Antiproximinal sets in Banach spaces of continuous functions, Anal. Numér. Théorie Approx. 5 (1976), 127-143. (1976) MR0477577
- Cobzaş S., Antiproximinal sets in Banach spaces of -type, Rev. Anal. Numér. Théorie Approx. 7 (1978), 141-145. (1978) MR0530744
- Cobzaş S., Support functionals of the unit ball in Banach spaces of bounded functions, Seminar on Mathematical Analysis, Babeş-Bolyai University Research Seminaries, Preprint nr. 4, pp.85-90, Cluj-Napoca, 1986.
- Dunford N., Schwartz J.T., Linear Operators I. General Theory, Interscience, New York, 1958. Zbl0084.10402MR0117523
- Edelstein M., Thompson A.C., Some results on nearest points and support properties of convex sets in , Pacific J. Math. 40 (1972), 553-560. (1972) MR0308741
- Fonf V.P., On antiproximinal sets in spaces of continuous functions on compacta (in Russian), Matem. Zametki 33 (1983), 549-558. (1983) MR0704442
- Fonf V.P., On strongly antiproximinal sets in Banach spaces (in Russian), Matem. Zametki 47 (1990), 130-136. (1990) MR1048552
- Holmes R.B., Geometric Functional Analysis and its Applications, Springer Verlag, BerlinHeidelberg-New York, 1975. Zbl0336.46001MR0410335
- Klee V., Remarks on nearest points in normed linear spaces, Proc. Colloq. Convexity, Copenhagen 1965, pp.161-176, Copenhagen, 1967. Zbl0156.36303MR0223859
- Phelps R.R., Subreflexive normed linear spaces, Archiv der Math. 8 (1957), 444-450. (1957) MR0099588
- Phelps R.R., Some subreflexive Banach spaces, Archiv der Math. 10 (1959), 162-169. (1959) Zbl0087.10704MR0107162
- Sierpinski W., Cardinal and Ordinal Numbers, Warszawa, 1965. Zbl0131.24801MR0194339
- Singer I., Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Editura Academiei and Springer Verlag, Bucharest-Berlin, 1970. Zbl0197.38601MR0270044
- Stečkin S.B., On the approximation properties of sets in normed linear spaces (in Russian), Rev. Math. Pures et Appl. 8 (1963), 5-18. (1963) MR0155168
- Zukhovickij S.I., On minimal extensions of linear functionals in spaces of continuous functions (in Russian), Izvestija Akad. Nauk SSSR, ser. matem. 21 (1957), 409-422. (1957) MR0088702
- Werner D., Funktionalanalysis, Springer Verlag, Berlin-Heidelberg-New York, 1995. Zbl1161.46001MR1787146
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.