Antiproximinal sets in the Banach space c ( X )

S. Cobzaş

Commentationes Mathematicae Universitatis Carolinae (1997)

  • Volume: 38, Issue: 2, page 247-253
  • ISSN: 0010-2628

Abstract

top
If X is a Banach space then the Banach space c ( X ) of all X -valued convergent sequences contains a nonvoid bounded closed convex body V such that no point in C ( X ) V has a nearest point in V .

How to cite

top

Cobzaş, S.. "Antiproximinal sets in the Banach space $c(X)$." Commentationes Mathematicae Universitatis Carolinae 38.2 (1997): 247-253. <http://eudml.org/doc/248056>.

@article{Cobzaş1997,
abstract = {If $X$ is a Banach space then the Banach space $c(X)$ of all $X$-valued convergent sequences contains a nonvoid bounded closed convex body $V$ such that no point in $C(X)\setminus V$ has a nearest point in $V$.},
author = {Cobzaş, S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {antiproximinal sets; best approximation; antiproximinal sets; best approximation},
language = {eng},
number = {2},
pages = {247-253},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Antiproximinal sets in the Banach space $c(X)$},
url = {http://eudml.org/doc/248056},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Cobzaş, S.
TI - Antiproximinal sets in the Banach space $c(X)$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1997
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 38
IS - 2
SP - 247
EP - 253
AB - If $X$ is a Banach space then the Banach space $c(X)$ of all $X$-valued convergent sequences contains a nonvoid bounded closed convex body $V$ such that no point in $C(X)\setminus V$ has a nearest point in $V$.
LA - eng
KW - antiproximinal sets; best approximation; antiproximinal sets; best approximation
UR - http://eudml.org/doc/248056
ER -

References

top
  1. Chakalov V.L., Extremal elements in some normed spaces, Comptes Rendus Acad. Bulgare des Sciences 36 (1983), 173-176. (1983) MR0709005
  2. Cobzaş S., Very non-proximinal sets in c 0 (in Romanian), Rev. Anal. Numer. Teoria Approx. 2 (1973), 137-141. (1973) MR0393980
  3. Cobzaş S., Antiproximinal sets in some Banach spaces, Math. Balkanica 4 (1974), 79-82. (1974) MR0377381
  4. Cobzaş S., Convex antiproximinal sets in the spaces c 0 and c (in Russian), Matem. Zametki 17 (1975), 449-457. (1975) MR0407567
  5. Cobzaş S., Antiproximinal sets in Banach spaces of continuous functions, Anal. Numér. Théorie Approx. 5 (1976), 127-143. (1976) MR0477577
  6. Cobzaş S., Antiproximinal sets in Banach spaces of c 0 -type, Rev. Anal. Numér. Théorie Approx. 7 (1978), 141-145. (1978) MR0530744
  7. Cobzaş S., Support functionals of the unit ball in Banach spaces of bounded functions, Seminar on Mathematical Analysis, Babeş-Bolyai University Research Seminaries, Preprint nr. 4, pp.85-90, Cluj-Napoca, 1986. 
  8. Dunford N., Schwartz J.T., Linear Operators I. General Theory, Interscience, New York, 1958. Zbl0084.10402MR0117523
  9. Edelstein M., Thompson A.C., Some results on nearest points and support properties of convex sets in c 0 , Pacific J. Math. 40 (1972), 553-560. (1972) MR0308741
  10. Fonf V.P., On antiproximinal sets in spaces of continuous functions on compacta (in Russian), Matem. Zametki 33 (1983), 549-558. (1983) MR0704442
  11. Fonf V.P., On strongly antiproximinal sets in Banach spaces (in Russian), Matem. Zametki 47 (1990), 130-136. (1990) MR1048552
  12. Holmes R.B., Geometric Functional Analysis and its Applications, Springer Verlag, BerlinHeidelberg-New York, 1975. Zbl0336.46001MR0410335
  13. Klee V., Remarks on nearest points in normed linear spaces, Proc. Colloq. Convexity, Copenhagen 1965, pp.161-176, Copenhagen, 1967. Zbl0156.36303MR0223859
  14. Phelps R.R., Subreflexive normed linear spaces, Archiv der Math. 8 (1957), 444-450. (1957) MR0099588
  15. Phelps R.R., Some subreflexive Banach spaces, Archiv der Math. 10 (1959), 162-169. (1959) Zbl0087.10704MR0107162
  16. Sierpinski W., Cardinal and Ordinal Numbers, Warszawa, 1965. Zbl0131.24801MR0194339
  17. Singer I., Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Editura Academiei and Springer Verlag, Bucharest-Berlin, 1970. Zbl0197.38601MR0270044
  18. Stečkin S.B., On the approximation properties of sets in normed linear spaces (in Russian), Rev. Math. Pures et Appl. 8 (1963), 5-18. (1963) MR0155168
  19. Zukhovickij S.I., On minimal extensions of linear functionals in spaces of continuous functions (in Russian), Izvestija Akad. Nauk SSSR, ser. matem. 21 (1957), 409-422. (1957) MR0088702
  20. Werner D., Funktionalanalysis, Springer Verlag, Berlin-Heidelberg-New York, 1995. Zbl1161.46001MR1787146

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.