Fixed points for multifunctions on generalized metric spaces with applications to a multivalued Cauchy problem

Adrian Petruşel

Commentationes Mathematicae Universitatis Carolinae (1997)

  • Volume: 38, Issue: 4, page 657-663
  • ISSN: 0010-2628

Abstract

top
The purpose of this paper is to prove an existence result for a multivalued Cauchy problem using a fixed point theorem for a multivalued contraction on a generalized complete metric space.

How to cite

top

Petruşel, Adrian. "Fixed points for multifunctions on generalized metric spaces with applications to a multivalued Cauchy problem." Commentationes Mathematicae Universitatis Carolinae 38.4 (1997): 657-663. <http://eudml.org/doc/248061>.

@article{Petruşel1997,
abstract = {The purpose of this paper is to prove an existence result for a multivalued Cauchy problem using a fixed point theorem for a multivalued contraction on a generalized complete metric space.},
author = {Petruşel, Adrian},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {generalized metric space; multivalued contraction; fixed points; differential inclusion; existence of solution; fixed point; multivalued contraction},
language = {eng},
number = {4},
pages = {657-663},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Fixed points for multifunctions on generalized metric spaces with applications to a multivalued Cauchy problem},
url = {http://eudml.org/doc/248061},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Petruşel, Adrian
TI - Fixed points for multifunctions on generalized metric spaces with applications to a multivalued Cauchy problem
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1997
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 38
IS - 4
SP - 657
EP - 663
AB - The purpose of this paper is to prove an existence result for a multivalued Cauchy problem using a fixed point theorem for a multivalued contraction on a generalized complete metric space.
LA - eng
KW - generalized metric space; multivalued contraction; fixed points; differential inclusion; existence of solution; fixed point; multivalued contraction
UR - http://eudml.org/doc/248061
ER -

References

top
  1. Aubin J.P., Cellina A., Differential Inclusions, Springer Verlag, Berlin, 1984. Zbl0538.34007MR0755330
  2. Aumann R.J., Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1-12. (1965) Zbl0163.06301MR0185073
  3. Covitz H., Nadler S.B., Jr., Multivalued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5-11. (1970) MR0263062
  4. Hiai F., Umegake H., Integrals, conditional expectations and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149-182. (1977) MR0507504
  5. Himmelberg C.J., Van Vleck F.S., Lipschitzian generalized differential equations, Rend. Sem. Mat. Univ. Parma 48 (1973), 159-169. (1973) Zbl0289.49009MR0340692
  6. Jung C.K., On generalized complete metric space, Bull. A.M.S. 75 (1969), 113-116. (1969) MR0234446
  7. Kisielewicz M., Differential Inclusions and Optimal Control, Kluwer Acad. Publ., Dordrecht, 1991. MR1135796
  8. Kuratowski K., Ryll-Nardzewski C., A general theorem on selectors, Bull. Polish Acad. Sci. 13 (1965), 397-403. (1965) Zbl0152.21403MR0188994
  9. Luxemburg W.A.J., On the convergence of successive approximations in the theory of ordinary differential equations, II, Indag. Math. 20 (1958), 540-546. (1958) MR0124554
  10. Petruşel A., On a theorem by Roman Wegrzyk, Demonstratio Math. 29 (1996), 637-641. (1996) MR1415506
  11. Wegrzyk R., Fixed point theorems for multivalued functions and their applications to functional equations, Diss. Math. 201 (1982), 1-28. (1982) MR0687277

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.