Some non-multiplicative properties are -invariant
Vladimir Vladimirovich Tkachuk
Commentationes Mathematicae Universitatis Carolinae (1997)
- Volume: 38, Issue: 1, page 169-175
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topReferences
top- Arhangel'skii A.V., Structure and classification of topological spaces and cardinal invariants (in Russian), Uspehi Mat. Nauk 33 6 (1978), 29-84. (1978) MR0526012
- Arhangel'skii A.V., On relationship between the invariants of topological groups and their subspaces (in Russian), Uspehi Mat. Nauk 35 3 (1980), 3-22. (1980) MR0580615
- Arhangel'skii A.V., Topological function spaces (in Russian), Moscow University Publishing House, Moscow, 1989. MR1017630
- Arhangel'skii A.V., -theory, in: Recent Progress in General Topology, edited by J. van Mill and M. Hušek, North Holland, 1992, pp.1-56. Zbl0932.54015MR1229121
- Arhangel'skii A.V., Ponomarev V.I., General Topology in Problems and Exercises (in Russian), Nauka Publishing House, Moscow, 1974. MR0239550
- Engelking R., General Topology, PWN, Warszawa, 1977. Zbl0684.54001MR0500780
- Gul'ko S.P., Khmyleva T.E., The compactness is not preserved by -equivalence (in Russian), Mat. Zametki 39 6 (1986), 895-903. (1986) MR0855937
- Pestov V.G., Some topological properties are preserved by -equivalence (in Russian), Uspehi Mat. Nauk 39 6 (1984), 203-204. (1984) MR0771108
- Tkachuk V.V., On a method of constructing examples of -equivalent spaces (in Russian), Uspehi Mat. Nauk 38 6 (1983), 127-128. (1983) MR0728737
- Todorčević S., Forcing positive partition relations, Trans. Amer. Math. Soc. 280 2 (1983), 703-720. (1983) MR0716846