Landesman Lazer type results for first order periodic problems
Commentationes Mathematicae Universitatis Carolinae (1997)
- Volume: 38, Issue: 2, page 297-308
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topO'Regan, Donal. "Landesman Lazer type results for first order periodic problems." Commentationes Mathematicae Universitatis Carolinae 38.2 (1997): 297-308. <http://eudml.org/doc/248074>.
@article{ORegan1997,
abstract = {Existence of nonnegative solutions are established for the periodic problem $y^\{\prime \}=f(t,y)$ a.eȯn $[0,T]$, $y(0)=y(T)$. Here the nonlinearity $f$ satisfies a Landesman Lazer type condition.},
author = {O'Regan, Donal},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {periodic; existence; Landesman Lazer; existence of nonnegative solutions; periodic problem; Landesman-Lazer-type condition},
language = {eng},
number = {2},
pages = {297-308},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Landesman Lazer type results for first order periodic problems},
url = {http://eudml.org/doc/248074},
volume = {38},
year = {1997},
}
TY - JOUR
AU - O'Regan, Donal
TI - Landesman Lazer type results for first order periodic problems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1997
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 38
IS - 2
SP - 297
EP - 308
AB - Existence of nonnegative solutions are established for the periodic problem $y^{\prime }=f(t,y)$ a.eȯn $[0,T]$, $y(0)=y(T)$. Here the nonlinearity $f$ satisfies a Landesman Lazer type condition.
LA - eng
KW - periodic; existence; Landesman Lazer; existence of nonnegative solutions; periodic problem; Landesman-Lazer-type condition
UR - http://eudml.org/doc/248074
ER -
References
top- Fonda A., Mawhin J., Quadratic forms, weighted eigenfunctions and boundary value problems for nonlinear second order ordinary differential equations, Proc. Royal Soc. Edinburgh 112A (1989), 145-153. (1989) Zbl0677.34022MR1007541
- Frigon M., O'Regan D., Existence results for first order impulsive differential equations, J. Math. Anal. Appl. 193 (1995), 96-113. (1995) Zbl0853.34011MR1338502
- Granas A., Guenther R.B., Lee J.W., Some general existence principles in the Carathéodory theory of nonlinear differential systems, J. Math. Pures et Appl. 70 (1991), 153-196. (1991) Zbl0687.34009MR1103033
- Mawhin J., Topological degree methods in nonlinear boundary value problems, AMS Regional Conf. Series in Math., 40, Providence, 1979. Zbl0414.34025MR0525202
- Mawhin J., Ward J.R., Periodic solutions of some forced Liénard differential equations at resonance, Arch. Math. 41 (1983), 337-351. (1983) Zbl0537.34037MR0731606
- Nkashama M.N., A generalized upper and lower solutions method and multiplicity results for nonlinear first order ordinary differential equations, J. Math. Anal. Appl. 140 (1989), 381-395. (1989) Zbl0674.34009MR1001864
- Nkashama M.N., Santanilla J., Existence of multiple solutions for some nonlinear boundary value problems, J. Diff. Eqns. 84 (1990), 148-164. (1990) Zbl0693.34011MR1042663
- O'Regan D., Theory of Singular Boundary Value Problems, World Scientific Press, Singapore, 1994. Zbl0807.34028MR1286741
- Yosida K., Functional Analysis, Springer Verlag, Berlin, 1980. Zbl0830.46001MR0617913
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.