Landesman Lazer type results for first order periodic problems

Donal O'Regan

Commentationes Mathematicae Universitatis Carolinae (1997)

  • Volume: 38, Issue: 2, page 297-308
  • ISSN: 0010-2628

Abstract

top
Existence of nonnegative solutions are established for the periodic problem y ' = f ( t , y ) a.eȯn [ 0 , T ] , y ( 0 ) = y ( T ) . Here the nonlinearity f satisfies a Landesman Lazer type condition.

How to cite

top

O'Regan, Donal. "Landesman Lazer type results for first order periodic problems." Commentationes Mathematicae Universitatis Carolinae 38.2 (1997): 297-308. <http://eudml.org/doc/248074>.

@article{ORegan1997,
abstract = {Existence of nonnegative solutions are established for the periodic problem $y^\{\prime \}=f(t,y)$ a.eȯn $[0,T]$, $y(0)=y(T)$. Here the nonlinearity $f$ satisfies a Landesman Lazer type condition.},
author = {O'Regan, Donal},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {periodic; existence; Landesman Lazer; existence of nonnegative solutions; periodic problem; Landesman-Lazer-type condition},
language = {eng},
number = {2},
pages = {297-308},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Landesman Lazer type results for first order periodic problems},
url = {http://eudml.org/doc/248074},
volume = {38},
year = {1997},
}

TY - JOUR
AU - O'Regan, Donal
TI - Landesman Lazer type results for first order periodic problems
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1997
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 38
IS - 2
SP - 297
EP - 308
AB - Existence of nonnegative solutions are established for the periodic problem $y^{\prime }=f(t,y)$ a.eȯn $[0,T]$, $y(0)=y(T)$. Here the nonlinearity $f$ satisfies a Landesman Lazer type condition.
LA - eng
KW - periodic; existence; Landesman Lazer; existence of nonnegative solutions; periodic problem; Landesman-Lazer-type condition
UR - http://eudml.org/doc/248074
ER -

References

top
  1. Fonda A., Mawhin J., Quadratic forms, weighted eigenfunctions and boundary value problems for nonlinear second order ordinary differential equations, Proc. Royal Soc. Edinburgh 112A (1989), 145-153. (1989) Zbl0677.34022MR1007541
  2. Frigon M., O'Regan D., Existence results for first order impulsive differential equations, J. Math. Anal. Appl. 193 (1995), 96-113. (1995) Zbl0853.34011MR1338502
  3. Granas A., Guenther R.B., Lee J.W., Some general existence principles in the Carathéodory theory of nonlinear differential systems, J. Math. Pures et Appl. 70 (1991), 153-196. (1991) Zbl0687.34009MR1103033
  4. Mawhin J., Topological degree methods in nonlinear boundary value problems, AMS Regional Conf. Series in Math., 40, Providence, 1979. Zbl0414.34025MR0525202
  5. Mawhin J., Ward J.R., Periodic solutions of some forced Liénard differential equations at resonance, Arch. Math. 41 (1983), 337-351. (1983) Zbl0537.34037MR0731606
  6. Nkashama M.N., A generalized upper and lower solutions method and multiplicity results for nonlinear first order ordinary differential equations, J. Math. Anal. Appl. 140 (1989), 381-395. (1989) Zbl0674.34009MR1001864
  7. Nkashama M.N., Santanilla J., Existence of multiple solutions for some nonlinear boundary value problems, J. Diff. Eqns. 84 (1990), 148-164. (1990) Zbl0693.34011MR1042663
  8. O'Regan D., Theory of Singular Boundary Value Problems, World Scientific Press, Singapore, 1994. Zbl0807.34028MR1286741
  9. Yosida K., Functional Analysis, Springer Verlag, Berlin, 1980. Zbl0830.46001MR0617913

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.