On linear functorial operators extending pseudometrics
Taras O. Banakh; Oleg Pikhurko
Commentationes Mathematicae Universitatis Carolinae (1997)
- Volume: 38, Issue: 2, page 343-348
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBanakh, Taras O., and Pikhurko, Oleg. "On linear functorial operators extending pseudometrics." Commentationes Mathematicae Universitatis Carolinae 38.2 (1997): 343-348. <http://eudml.org/doc/248082>.
@article{Banakh1997,
abstract = {For a functor $F\supset Id$ on the category of metrizable compacta, we introduce a conception of a linear functorial operator $T=\lbrace T_X:Pc(X)\rightarrow Pc(FX)\rbrace $ extending (for each $X$) pseudometrics from $X$ onto $FX\supset X$ (briefly LFOEP for $F$). The main result states that the functor $SP^n_G$ of $G$-symmetric power admits a LFOEP if and only if the action of $G$ on $\lbrace 1,\dots ,n\rbrace $ has a one-point orbit. Since both the hyperspace functor $\exp $ and the probability measure functor $P$ contain $SP^2$ as a subfunctor, this implies that both $\exp $ and $P$ do not admit LFOEP.},
author = {Banakh, Taras O., Pikhurko, Oleg},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {linear functorial operator extending (pseudo)metrics; the functor of $G$-symmetric power; linear functorial operator extending pseudometrics; functor of -symmetric power},
language = {eng},
number = {2},
pages = {343-348},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On linear functorial operators extending pseudometrics},
url = {http://eudml.org/doc/248082},
volume = {38},
year = {1997},
}
TY - JOUR
AU - Banakh, Taras O.
AU - Pikhurko, Oleg
TI - On linear functorial operators extending pseudometrics
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1997
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 38
IS - 2
SP - 343
EP - 348
AB - For a functor $F\supset Id$ on the category of metrizable compacta, we introduce a conception of a linear functorial operator $T=\lbrace T_X:Pc(X)\rightarrow Pc(FX)\rbrace $ extending (for each $X$) pseudometrics from $X$ onto $FX\supset X$ (briefly LFOEP for $F$). The main result states that the functor $SP^n_G$ of $G$-symmetric power admits a LFOEP if and only if the action of $G$ on $\lbrace 1,\dots ,n\rbrace $ has a one-point orbit. Since both the hyperspace functor $\exp $ and the probability measure functor $P$ contain $SP^2$ as a subfunctor, this implies that both $\exp $ and $P$ do not admit LFOEP.
LA - eng
KW - linear functorial operator extending (pseudo)metrics; the functor of $G$-symmetric power; linear functorial operator extending pseudometrics; functor of -symmetric power
UR - http://eudml.org/doc/248082
ER -
References
top- Banakh T., AE(0)-spaces and regular operators extending (averaging) pseudometrics, Bull. Polon. Acad. Sci. Ser. Sci. Math. (1994), 42 197-206. (1994) Zbl0827.54010MR1811849
- Bessaga C., Pełczyński A., On the spaces of measurable functions, Studia Math. 44 (1972), 597-615. (1972) MR0368068
- Fedorchuk V.V., On some geometric properties of covariant functors (in Russian), Uspekhi Mat. Nauk 39 (1984), 169-208. (1984) MR0764014
- Fedorchuk V.V., Triples of infinite iterates of metrizable functors (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. (1990), 54 396-418. (1990)
- Fedorchuk V.V., Filippov V.V., General Topology. Principal Constructions (in Russian), Moscow Univ. Press Moscow (1988). (1988)
- Pikhurko O., Extending metrics in compact pairs, Mat. Studiï 3 (1994), 103-106. (1994) Zbl0927.54029MR1692801
- Zarichnyi M., Regular linear operators extending metrics: a short proof, Bull. Polish. Acad. Sci. 44 (1996), 267-269. (1996) Zbl0866.54017MR1419399
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.