Firmly pseudo-contractive mappings and fixed points

Birendra Kumar Sharma; Daya Ram Sahu

Commentationes Mathematicae Universitatis Carolinae (1997)

  • Volume: 38, Issue: 1, page 101-108
  • ISSN: 0010-2628

Abstract

top
We give some fixed point theorems for firmly pseudo-contractive mappings defined on nonconvex subsets of a Banach space. We also prove some fixed point results for firmly pseudo-contractive mappings with unbounded nonconvex domain in a reflexive Banach space.

How to cite

top

Sharma, Birendra Kumar, and Sahu, Daya Ram. "Firmly pseudo-contractive mappings and fixed points." Commentationes Mathematicae Universitatis Carolinae 38.1 (1997): 101-108. <http://eudml.org/doc/248084>.

@article{Sharma1997,
abstract = {We give some fixed point theorems for firmly pseudo-contractive mappings defined on nonconvex subsets of a Banach space. We also prove some fixed point results for firmly pseudo-contractive mappings with unbounded nonconvex domain in a reflexive Banach space.},
author = {Sharma, Birendra Kumar, Sahu, Daya Ram},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {firmly pseudo-contractive mappings on nonconvex domains; fixed points; firmly pseudo-contractive mappings on nonconvex domains; fixed points},
language = {eng},
number = {1},
pages = {101-108},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Firmly pseudo-contractive mappings and fixed points},
url = {http://eudml.org/doc/248084},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Sharma, Birendra Kumar
AU - Sahu, Daya Ram
TI - Firmly pseudo-contractive mappings and fixed points
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1997
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 38
IS - 1
SP - 101
EP - 108
AB - We give some fixed point theorems for firmly pseudo-contractive mappings defined on nonconvex subsets of a Banach space. We also prove some fixed point results for firmly pseudo-contractive mappings with unbounded nonconvex domain in a reflexive Banach space.
LA - eng
KW - firmly pseudo-contractive mappings on nonconvex domains; fixed points; firmly pseudo-contractive mappings on nonconvex domains; fixed points
UR - http://eudml.org/doc/248084
ER -

References

top
  1. Browder F.E., Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875-882. (1967) Zbl0176.45302MR0232255
  2. Carbone A., Marino G., Fixed points and almost fixed points of nonexpansive maps in Banach spaces, Riv. Mat. Univ. Parma (4) 13 (1987), 385-393. (1987) Zbl0674.47037MR0977691
  3. Deimling K., Zeros of accretive operators, Manuscripta Math. 13 (1974), 365-374. (1974) Zbl0288.47047MR0350538
  4. Diestel J., Geometry of Banach Spaces, Selected Topics, Lecture Notes in Math., Vol. 485, Springer-Verlag, Berlin, Heidelberg, New York, 1975. Zbl0466.46021MR0461094
  5. Goebel K., Kuczumow T., A contribution to the theory of nonexpansive mappings, Bull. Can. Math. Soc. 70 (1978), 355-357. (1978) Zbl0437.47040MR0584472
  6. Kato T., Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508-520. (1967) Zbl0163.38303MR0226230
  7. Kirk W.A., Ray W.O., Fixed point theorem for mappings defined on unbounded sets in Banach spaces, Studio Math. 64 (1979), 127-138. (1979) MR0537116
  8. Martin R.H., Differential equations on closed subsets of a Banach space, Trans. Math. Soc. 81 (1981), 71-74. (1981) 
  9. Ray W.O., Zeros of accretive operators defined on unbounded sets, Houston J. Math. 5 (1979), 133-139. (1979) Zbl0412.47032MR0533647
  10. Schu J., Iterative approximation of fixed point of nonexpansive mappings with starshaped domain, Comment. Math. Univ. Carolinae 31.2 (1990), 277-282. (1990) MR1077898
  11. Schu J., Approximation of fixed points of asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 112 (1991), 143-151. (1991) MR1039264
  12. Wang S.Z., Y B., Gao M., Iseki K., Some fixed point theorems on expansion mappings, Math. Japon. 29 (1984), 631-636. (1984) Zbl0554.54023MR0759452
  13. Williamson T.E., A geometric approach to fixed points of nonself mapping T : D X , Contemp. Math. 18 (1983), 243-253. (1983) MR0728603

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.