On bounds of the drag for Stokes flow around a body without thickness
Commentationes Mathematicae Universitatis Carolinae (1997)
- Volume: 38, Issue: 4, page 665-679
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBresch, Didier. "On bounds of the drag for Stokes flow around a body without thickness." Commentationes Mathematicae Universitatis Carolinae 38.4 (1997): 665-679. <http://eudml.org/doc/248089>.
@article{Bresch1997,
abstract = {This paper is devoted to lower and upper bounds of the hydrodynamical drag $T$ for a body in a Stokes flow. We obtain the upper bound since the solution for a flow in an annulus and therefore the hydrodynamical drag can be explicitly derived. The lower bound is obtained by comparison to the Newtonian capacity of a set and with the help of a result due to J. Simon $\,[10]$. The chosen approach provides an interesting lower bound which is independent of the interior of the body.},
author = {Bresch, Didier},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Stokes flows; hydrodynamical drag; lower and upper bounds; lower and upper bounds},
language = {eng},
number = {4},
pages = {665-679},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On bounds of the drag for Stokes flow around a body without thickness},
url = {http://eudml.org/doc/248089},
volume = {38},
year = {1997},
}
TY - JOUR
AU - Bresch, Didier
TI - On bounds of the drag for Stokes flow around a body without thickness
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1997
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 38
IS - 4
SP - 665
EP - 679
AB - This paper is devoted to lower and upper bounds of the hydrodynamical drag $T$ for a body in a Stokes flow. We obtain the upper bound since the solution for a flow in an annulus and therefore the hydrodynamical drag can be explicitly derived. The lower bound is obtained by comparison to the Newtonian capacity of a set and with the help of a result due to J. Simon $\,[10]$. The chosen approach provides an interesting lower bound which is independent of the interior of the body.
LA - eng
KW - Stokes flows; hydrodynamical drag; lower and upper bounds; lower and upper bounds
UR - http://eudml.org/doc/248089
ER -
References
top- Allaire G., Homogénéisation des équations de Stokes et de Navier-Stokes, Thesis, Pierre et Marie Curie University, France, 1989.
- Bello J.A., Fernandez-Cara E., Lemoine J., Simon J., The differentiability of the drag with respect to the variations of a lipschitz domain in Navier-Stokes flow, SIAM J. Control Optim. 35 2 (1997), 626-640. (1997) MR1436642
- Cioranescu D., Murat F., Un terme étrange venu d'ailleurs, Non linear partial differential equations and their applications, Collège de France Seminar, 2 et 3 ed. by H. Brezis and J.L. Lions, Research Notes in Mathematics 60 et 70, Pitman, London, 1982. Zbl0498.35034
- Dautray R., Lions J.L., Analyse mathématique et calcul numérique pour les Sciences et les Techniques (Chapitre II L'opérateur de Laplace), INSTN C.E.A., 1985.
- Gilbart D., Trudinger N.S., Elliptic partial differential equation of second order, second edition, Springer Verlag, 1983. MR0737190
- Godbillon C., Eléments de Topologie Algébrique, Hermann Paris, Collection méthodes, 1971. Zbl0907.55001MR0301725
- Heywood J.G., On some paradoxes concerning two dimensional Stokes flow past an obstacle, Indiana University Mathematics Journal 24 5 (1974), 443-450. (1974) Zbl0315.35075MR0410123
- Mossino J., Inégalités Isopérimètriques et applications en physique, Travaux en cours, Hermann, éditeurs des Sciences et des Arts, Paris, 1992. Zbl0537.35002MR0733257
- Sanchez-Hubert J., Sanchez-Palencia E., Introduction aux méthodes asymptotiques et à l'homogénéisation, Masson, 1992.
- Simon J., On a result due to L.A. Caffarelli and A. Friedman concerning the asymptotic behavior of a plasma, Non linear partial differential equations and their applications, Collège de France, Seminar volume IV, Research Notes in Mathematics, Pitman, London, 1983, pp.214-239. Zbl0555.35045MR0716520
- Simon J., Distributions à valeurs vectorielles, to appear.
- Stokes G.G., On the effect of the internal friction of fluids on the motion of pendulums., Trans. Camb. Phil. Soc. 9 Part III (1851), 8-106. (1851)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.