Relative multiplication and distributive modules

José Escoriza; Blas Torrecillas

Commentationes Mathematicae Universitatis Carolinae (1997)

  • Volume: 38, Issue: 2, page 205-221
  • ISSN: 0010-2628

Abstract

top
We study the construction of new multiplication modules relative to a torsion theory τ . As a consequence, τ -finitely generated modules over a Dedekind domain are completely determined. We relate the relative multiplication modules to the distributive ones.

How to cite

top

Escoriza, José, and Torrecillas, Blas. "Relative multiplication and distributive modules." Commentationes Mathematicae Universitatis Carolinae 38.2 (1997): 205-221. <http://eudml.org/doc/248091>.

@article{Escoriza1997,
abstract = {We study the construction of new multiplication modules relative to a torsion theory $\tau $. As a consequence, $\tau $-finitely generated modules over a Dedekind domain are completely determined. We relate the relative multiplication modules to the distributive ones.},
author = {Escoriza, José, Torrecillas, Blas},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {torsion theory; semicentered torsion theory; multiplication module; distributive module; torsion theory; multiplication module; distributive module; Krull domains},
language = {eng},
number = {2},
pages = {205-221},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Relative multiplication and distributive modules},
url = {http://eudml.org/doc/248091},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Escoriza, José
AU - Torrecillas, Blas
TI - Relative multiplication and distributive modules
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1997
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 38
IS - 2
SP - 205
EP - 221
AB - We study the construction of new multiplication modules relative to a torsion theory $\tau $. As a consequence, $\tau $-finitely generated modules over a Dedekind domain are completely determined. We relate the relative multiplication modules to the distributive ones.
LA - eng
KW - torsion theory; semicentered torsion theory; multiplication module; distributive module; torsion theory; multiplication module; distributive module; Krull domains
UR - http://eudml.org/doc/248091
ER -

References

top
  1. Albu T., Năstăsescu C., Modules arithmétiques, Acta Math. A. S. Hung. 25 (3-4) (1974), 299-311. (1974) MR0357383
  2. Barnard A., Multiplication modules, J. of Algebra 71 (1981), 174-178. (1981) Zbl0468.13011MR0627431
  3. Bueso J.L., Torrecillas B., Verschoren A., Local cohomology and localization, Pitman Research Notes in Mathematics Series 226, Longman Scientific and Technical, Harlowe, 1989. Zbl0691.14003MR1088249
  4. Camillo V., Distributive modules, J. of Algebra 36 (1975), 16-25. (1975) Zbl0308.16015MR0573061
  5. El-Bast Abd., Smith P.F., Multiplication modules, Comm. in Algebra 16 (4) (1988), 755-779. (1988) Zbl0642.13003MR0932633
  6. Escoriza J., Torrecillas B., Multiplication modules relative to torsion theories, Comm. in Algebra 23 (11) (1995), 4315-4331. (1995) Zbl0849.13008MR1351136
  7. Gilmer R.W., Multiplicative ideal theory, Marcel Dekker, New York, 1972. Zbl0804.13001MR0427289
  8. Griffin M., Multiplication rings via their total quotient rings, Can. J. Math. XXVI (2) (1974), 430-449. (1974) Zbl0259.13007MR0340238
  9. Hasan M.A.K., Naoum A.G., The residual of finitely generated multiplication modules, Arch. Math. 46 (1986), 225-230. (1986) Zbl0573.13001MR0834840
  10. Larsen M.D., McCarthy P.J., Multiplicative theory of ideals, Pure and Applied Mathematics 43 Academic Press, New York, 1979. Zbl0237.13002MR0414528
  11. Mehdi F., Singh S., Multiplication modules, Canad. Math. Bull. 22 (1) (1979), 93-98. (1979) Zbl0408.13002MR0532275
  12. Năstăsescu C., La structure des modules par rapport à une topologie additive, Tôhoku Math. Journal 26 (1974), 173-201. (1974) MR0349765
  13. Smith P.F., On non-commutative AM-rings, Houston J. of Math. 11.3 (1985), 405-422. (1985) Zbl0608.16009
  14. Smith P.F., Some remarks on multiplication modules, Arch. Math. 50 (1988), 223-235. (1988) Zbl0615.13003MR0933916
  15. Smith W.W., Projective ideals of finite type, Canad. J. Math. 21 (1969), 1057-1061. (1969) Zbl0183.04001MR0246864
  16. Stenström B., Rings of Quotiens, Springer-Verlag, Berlin, 1975. MR0389953
  17. Stephenson W., Modules whose lattice of submodules is distributive, Proc. London Math. Soc. 3 28 (1974), 291-310. (1974) Zbl0294.16003MR0338082
  18. Ukegawa T., Some properties of non-commutative multiplication rings, Proc. Japan Acad. 54 Ser. A (1978), 279-284. (1978) Zbl0434.16004MR0517670
  19. Ukegawa T., Left noetherian multiplication rings, Osaka J. Math. 17 (1980), 449-453. (1980) Zbl0444.16023MR0587765
  20. Ukegawa T., Some remarks on M -rings, Math. Japonica 28 2 (1983), 195-203. (1983) Zbl0517.16026MR0699583

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.